Przejdź do głównej zawartości

Naukowcy coraz bliżej odebrania sygnału sprzed 12 mld lat

Dzisiaj nocne niebo wypełniają gwiazdy. Ale kiedy Wszechświat był w powijakach, nie miał żadnych gwiazd. Międzynarodowy zespół naukowców jest jeszcze bliżej niż kiedykolwiek od wykrycia, zmierzenia i zbadania sygnału z tej epoki, który podróżuje przez kosmos od czasu, gdy era bezgwiezdna zakończyła się ok. 13 mld lat temu.


Zespół ten poinformował w zeszłym roku w Astrophysical Journal, że osiągnął prawie dziesięciokrotną poprawę danych emisji radiowej zebranych przez Murchison Widefield Array. Członkowie zespołu analizują obecnie dane z tego radioteleskopu w poszukiwaniu sygnału z tego słabo poznanego i rozumianego „ciemnego wieku” naszego Wszechświata.

Poznanie tego okresu pomoże odpowiedzieć na najważniejsze pytania dotyczące Wszechświata.

„Uważamy, że właściwości Wszechświata w tym okresie miały znaczący wpływ na powstawanie pierwszych gwiazd i wprawiły w ruch dzisiejsze aspekty strukturalne Wszechświata. Sposób, w jaki materia była rozmieszczona we Wszechświecie w tamtym okresie, prawdopodobnie wpłynął na dzisiejszy rozkład galaktyk i gromad galaktyk” – powiedział członek zespołu Miguel Morales, profesor fizyki na Uniwersytecie Waszyngtona.

Przed tą ciemną erą Wszechświat był gorący i gęsty. Elektrony i fotony regularnie wzajemnie „łapały się w sidła”, przez co Wszechświat był nieprzezroczysty. Ale kiedy miał mniej niż milion lat, interakcje elektron-proton stały się rzadkością. Rozszerzający się Wszechświat stawał się coraz bardziej przejrzysty i ciemny, rozpoczynając ciemną erę.

Era bezgwiezdna trwała setki milionów lat, podczas który neutralny wodór dominował w kosmosie.

„W tej ciemnej erze nie ma oczywiście sygnału opartego na świetle, który moglibyśmy badać, aby dowiedzieć się na jego temat – nie było światła widzialnego! Ale istnieje konkretny sygnał, którego możemy szukać. Pochodzi z całego neutralnego wodoru. Nigdy nie mierzyliśmy tego sygnału, ale wiemy, że tam jest. I trudno go wykryć, bo w ciągu 13 mld lat od momentu wyemitowania tego sygnału nasz Wszechświat stał się bardzo ruchliwym miejscem, wypełnionym inną aktywnością gwiazd, galaktyk a nawet naszą technologią, która zagłusza sygnał od neutralnego wodoru” – powiedział Morales.

Sygnał sprzed 13 mld lat, za którym podąża Morales i jego zespół, to elektromagnetyczna emisja radiowa z neutralnego wodoru o długości fali 21 cm. Od tego czasu Wszechświat rozszerzył się, rozciągając sygnał na prawie 2 metry.

Morales powiedział, że sygnał ten powinien zawierać informację o ciemnej erze i wydarzeniach, które ją zakończyły.

Kiedy Wszechświat miał zaledwie 1 mld lat, atomy wodoru zaczęły się zespalać i tworzyć pierwsze gwiazdy, co zakończyło ciemną erę. Światło tych pierwszych gwiazd rozpoczęło nową erę -  Epokę Rejonizacji – w której energia z tych gwiazd przekształciła większość neutralnego wodoru w zjonizowaną plazmę. Plazma ta dominuje do dzisiaj w przestrzeni międzygwiazdowej.

„Epoka Rejonizacji i poprzedzająca ją ciemna era są krytycznymi okresami dla zrozumienia właściwości naszego Wszechświata, np. dlaczego niektóre obszary są pełne galaktyk, a inne stosunkowo puste, jego rozkład materii, a potencjalnie nawet ciemnej materii i ciemnej materii” – powiedział Morales.

Murchison Widefield Array jest podstawowym narzędziem zespołu. Ten radioteleskop składa się z 4096 anten dipolowych, które mogą odbierać sygnały o niskiej częstotliwości, takie jak elektromagnetyczna struktura neutralnego wodoru.

Ale tego rodzaju sygnały o niskiej częstotliwości są trudne do wykrycia ze względu na elektromagnetyczny „szum” pochodzący z innych źródeł tętniących w kosmosie, w tym galaktyk, gwiazd i aktywności człowieka. Morales i jego koledzy opracowali jeszcze bardziej wyrafinowane metody filtrowania hałasu i zbliżania się do tego sygnału. W 2019 roku naukowcy ogłosili, że odfiltrowali zakłócenia elektromagnetyczne – w tym nasze własne audycje radiowe – z ponad 21 godzin danych z MWA.

Idąc dalej, zespół ma około 3000 godzin dodatkowych danych na temat emisji zebranych przez radioteleskop. Naukowcy próbują odfiltrować zakłócenia i zbliżyć się do tego nieuchwytnego sygnału od neutralnego wodoru – i ciemnego wieku, który może oświetlić.

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu. Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu. Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach. Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz. W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę.

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi. Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego. „Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy. Do odkrycia naukowc

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne. Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”. Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przeds