Przejdź do głównej zawartości

Co się dzieje z gwiazdą, zanim wybuchnie i umrze?

Ostatnie badania nad neutrinami pochodzącymi tuż sprzed wybuchu supernowej zbliżyły naukowców do zrozumienia, co dzieje się z gwiazdami, zanim te wybuchną i umrą. W nowym badaniu prześledzono modele ewolucji gwiazd do przetestowania niepewnych prognoz.


Kiedy gwiazda umiera, emituje ogromną liczbę neutrin, które, jak się przypuszcza, napędzają powstającą supernową. Neutrina przepływają swobodnie przez gwiazdę, zanim eksplozja osiągnie jej powierzchnię. Następnie naukowcy mogą wykryć neutrina przed pojawieniem się supernowej; w rzeczywistości wykryto kilkadziesiąt neutrin z supernowej, która wybuchła w 1987 roku, kilka godzin przed tym, nim eksplozja została zauważona w świetle widzialnym.

Oczekuje się, że detektory neutrin nowej generacji wykryją około 50 000 neutrin z podobnego rodzaju supernowych. Technologia stała się tak potężna, że naukowcy przewidują, że wykryją słabe sygnały neutrin, które pojawiają się na kilka dni przed eksplozją; podobnie jak prognozy pogody supernowych, da to astronomom możliwość złapania pierwszego światła supernowej. Jest to również jeden z wielu sposobów na bezpośrednie wydobywanie informacji z jądra gwiazdy.

Chociaż istnieje ogólne zrozumienie tego, w jaki sposób masywna gwiazda ewoluuje i wybucha, naukowcy wciąż nie są pewni, co prowadzi do wybuchu supernowej. Wielu fizyków próbowało modelować te końcowe fazy życia gwiazd, ale wyniki wydają się przypadkowe. Nie można potwierdzić, czy są poprawne. Ponieważ wykrywanie neutrin sprzed wybuchu supernowej pozwala naukowcom lepiej ocenić te modele, zespół naukowców zbadał modele późnych etapów ewolucji gwiazd i to, jak może to wpłynąć na oszacowania neutrin pochodzących sprzed eksplozji supernowych.

Ryosuke Hirai z OzGrav i współautor pracy, mówi: „Pomoże nam to w pełni wykorzystać informacje z przeszłych detekcji neutrin pochodzących sprzed wybuchu supernowych. W pierwszym badaniu zbadaliśmy niepewność pojedynczej gwiazdy, która jest 15 razy masywniejsza od Słońca. Emisja neutrin obliczona na podstawie tych modeli gwiazdowych różniła się znacznie pod względem jasności neutrin. Oznacza to, że oszacowanie neutrin sprzed eksplozji są bardzo wrażliwe na te małe szczegóły modelu gwiezdnego.”

Badanie pokazało znaczną niepewność prognozowania neutrin sprzed wybuchu supernowej, a także ujawniło związek między właściwościami neutrin i gwiazd.

“Następna supernowa w naszej galaktyce może pojawić się w każdej chwili, a naukowcy czekają na wykrycie neutrin sprzed eksplozji, aby zrozumieć kluczowe części ewolucji masywnych gwiazd i mechanizmy wybuchu supernowych.”

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu.

Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu.
Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach.
Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz.
W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę. Naukowcy uważają, że źró…

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi.

Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego.
„Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy.
Do odkrycia naukowcy wykorzystali dane…

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne.


Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”.
Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przedstawiona przez b…