Posty

Wyświetlanie postów z marzec, 2020

Swobodnie płynące gwiazdy w zgrubieniu centralnym Drogi Mlecznej

Obraz
Jak wyjaśnia ogólna teoria względności, ścieżka światła ulega zakrzywieniu w obecności masy. Zatem masywny obiekt może działać jak soczewka – tak zwana „soczewka grawitacyjna” – zniekształcając obraz obiektu widzianego za nią. Mikrosoczewkowanie jest zjawiskiem pokrewnym: powstaje krótki błysk światła, gdy poruszające się ciało kosmiczne, działające jak soczewka grawitacyjna, moduluje intensywność światła gwiazdy tła, gdy przypadkowo przechodzi między nią a obserwatorem. Około pięćdziesiąt lat temu naukowcy przewidzieli, że jeżeli kiedykolwiek będzie możliwe zaobserwowanie błysku mikrosoczewkowania z dwóch oddzielonych od siebie punktów obserwacyjnych, pomiar paralaksy określi odległość ciemnego obiektu. Jennifer Yee, astronom z CfA, jest członkiem dużego międzynarodowego zespołu astronomów wykonującego pomiary paralaksy mikrosoczewkowania małych obiektów gwiazdowych. Technika ta jest potężnym narzędziem do badania pojedynczych obiektów, takich jak swobodnie płynące planety, b

ALMA analizuje gaz uderzany przez młode dżety z supermasywnych czarnych dziur

Obraz
Astronomowie korzystający z ALMA uzyskali pierwszy dokładny obraz zaburzonych gazowych obłoków w galaktyce odległej o 11 mld lat świetlnych. Zespół odkrył, że zaburzenia te są wywołane przez młode potężne dżety wyrzucane z supermasywnej czarnej dziury znajdującej się w centrum macierzystej galaktyki. Wynik ten rzuca światło na tajemnicę procesu ewolucyjnego galaktyk we wczesnym Wszechświecie. Powszechnie wiadomo, że czarne dziury wywierają silne przyciąganie grawitacyjne na otaczającą materię. Jednak mniej wiadomo na temat tego, że niektóre czarne dziury mają szybko poruszające się strumienie zjonizowanej materii, zwane dżetami. W niektórych pobliskich galaktykach rozwinięte dżety zdmuchują galaktyczne obłoki gazowe, powodując tłumienie procesu formowania się gwiazd. Dlatego, aby zrozumieć ewolucję galaktyk, niezwykle ważne jest obserwowanie współzależności między dżetami supermasywnych czarnych dziur i obłokami gazowymi w całej kosmicznej historii. Jednak trudno było uzyskać

Ewolucja Ziemi wykorzystana jako przewodnik w polowaniu na egzoplanety

Obraz
Astronomowie z Cornell University stworzyli pięć modeli reprezentujących kluczowe punkty z ewolucji naszej planety, takie jak chemiczne migawki z epok geologicznych Ziemi. Wykorzystują je w nadchodzącej nowej erze potężnych teleskopów jako widmowe szablony w polowaniu na planety podobne do Ziemi, znajdujące się w odległych układach słonecznych. Nowa generacja zarówno kosmicznych jak i naziemnych teleskopów, w połączeniu z tymi modelami pozwoli naukowcom zidentyfikować planety takie, jak nasza Ziemia krążące w odległości od 50 do 100 lat świetlnych od nas. Używając naszą własną planetę jako klucz, astronomowie modelowali pięć różnych epok Ziemi aby stworzyć szablon pokazujący, w jaki sposób mogą scharakteryzować potencjalną egzo-Ziemię – od młodej prebiotycznej Ziemi po nasz współczesny świat. Modele pozwalają również zbadać, w którym momencie ewolucji Ziemi odległy obserwator może zidentyfikować życie na „błękitnych kropkach” i innych podobnych światach. Zespół stw

Tsunami z kwazarów rozdziera galaktyki

Obraz
Korzystając z Kosmicznego Teleskopu Hubble’a zespół astronomów odkrył najbardziej energetyczne odpływy, jakie kiedykolwiek miały miejsce we Wszechświecie. Pochodzą z kwazarów i przedzierają się przez przestrzeń międzygwiazdową jak tsunami, siejąc spustoszenie w galaktykach, w których kwazary żyją.  Kwazary to niezwykle odległe obiekty niebieskie, emitujące wyjątkowo duże ilości energii. Zawierają supermasywne czarne dziury zasilane przez opadającą na nie materię, która może świecić 1000 razy jaśniej niż ich macierzyste galaktyki posiadające setki miliardów gwiazd. Gdy czarna dziura pochłania materię, gorący gaz otacza ją i emituje intensywne promieniowanie, tworząc kwazar. Wiatry, napędzane przez ciśnienie promieniowania z okolic czarnej dziury, odpychają materię od centrum galaktyki. Odpływy te przyspieszają do niesamowitych prędkości stanowiących kilka procent prędkości światła. Żadne inne zjawisko nie przenosi takiej ilości energii mechanicznej. W ciągu 10 mln lat o

Ciemna strona materii

Obraz
Tylko niewielki ułamek całkowitej masy Wszechświata tworzą znane cząsteczki (materia barionowa i neutrina), podczas gdy reszta składa się z ciemnej materii. To sprawia, że ciemna materia jest integralną częścią tzw. modelu kosmologicznego Lambda Cold Dark Matter, który naukowcy wykorzystują do opisania natury Wszechświata zgodnie z jego wiekiem, tempem ekspansji, historią i zawartością. Istnienie ciemnej materii po raz pierwszy zostało wskazane w latach 30. XX wieku, kiedy szwajcarski astrofizyk Fritz Zwicky znalazł anomalię, gdy próbował oszacować masę dużych gromad galaktyk za pomocą pomiarów prędkości poszczególnych galaktyk w tych gromadach. Stwierdził, że obserwowane prędkości były zaskakująco wysokie i postulował, że galaktyki muszą podlegać polu grawitacyjnemu znacznie silniejszemu niż to, które tworzy masa obserwowanych układów, a zatem dodatkowa masa była wynikiem jakiejś formy nieobserwowalnego rodzaju „ciemnej” materii. Potwierdzenie tych prognoz zajęło 40 lat, kied

Zwyczaje żywieniowe rentgenowskich układów podwójnych z gwiazdami typu Be

Obraz
Ludzkość bada światło gwiazd od początku swojej historii, jednak dopiero niedawno odkryliśmy, że gwiazdy nie lubią być same. Układy podwójne - zawierające dwie gwiazdy krążące wokół siebie - są jednym z najczęstszych rodzajów wiązań grawitacyjnych kolekcji gwiazd, ale ich ewolucja jest złożona. Astronomowie próbują ułożyć puzzle różnych obserwacji gwiezdnych, aby uzyskać szerszy obraz. Wykorzystując zrozumienie ewolucji układów podwójnych, naukowcy mogą symulować populacje gwiazd podwójnych za pomocą kodu syntezy populacji gwiazdowej COMPAS. Badacze z OzGrav, we współpracy z Instytutem Maxa Plancka niedawno przeprowadzili badanie, aby móc zrozumieć pochodzenie właściwości tzw. układów podwójnych rentgenowskich z gwiazdami typu Be (ang. Be X-ray) w Małym Obłoku Magellana. Układy podwójne typu Be X-ray to układy złożone z gwiazdy neutronowej krążącej wokół szybko rotującej masywnej gwiazdy. Ta rotacja powoduje, że masywna gwiazda wytwarza dysk z wypływającej materii – cz

Drugie wykrycie układu podwójnego gwiazd neutronowych przez LIGO. Czy aby na pewno?

Obraz
Jeżeli przegapiliście wiadomości ze stycznia bieżącego roku to informujemy, że obserwatorium LIGO wykryło prawdopodobnie drugie zdarzenie połączenia się dwóch gwiazd neutronowych (pisałam o tym  tutaj ).  25 kwietnia 2019 roku detektor LIGO w Livingston w Luizjanie wykrył sygnał fali grawitacyjnej z połączenia obiektów znajdujących się około 520 mln lat świetlnych stąd. Obserwacja ta, wykonana na zaledwie jednym detektorze – ten w Hanford chwilowo był wyłączony a Virgo nie zarejestrował zjawiska – była jednak wystarczająco silna, aby można ją było zakwalifikować jako wyraźne wykrycie zdarzenia połączenia. Analiza sygnału z GW190425 wskazuje, że widzieliśmy zderzenie układu podwójnego o łącznej masie 3,3 – 3,7 razy większej od masy Słońca. Podczas, gdy szacowane masy łączących się obiektów w przedziale pomiędzy 1,1 do 2,5 masy Słońca są zgodne z oczekiwanymi masami gwiazd neutronowych, ta zmierzona całkowita masa jest znacznie większa niż jakiegokolwiek układu podwójnego gw

Dziwne orbity dysków planetarnych „Tatooine”

Obraz
Astronomowie korzystający z ALMA odkryli zastanawiające geometrie orbitalne w dyskach protoplanetarnych wokół gwiazd podwójnych. Podczas, gdy dyski krążące wokół najbardziej zwartych układów podwójnych dzielą prawie tę samą płaszczyznę, dyski otaczające szerokie układy podwójne mają mocno nachylone płaszczyzny orbit. Układy te mogą uczyć nas o tworzeniu się planet w złożonych środowiskach. W ciągu ostatnich dwóch dekad znaleziono tysiące planet krążących wokół gwiazd innych niż nasze Słońce. Niektóre z tych planet krążą wokół dwóch gwiazd, tak jak Tatooine, dom Luke’a Skywalkera. Planety rodzą się w dyskach protoplanetarnych, ale większość badanych dotychczas dysków krąży wokół pojedynczych gwiazd. Egzoplanety „Tatooine” tworzą się w dyskach wokół gwiazd podwójnych. Badanie miejsc narodzin planet „Tatooine” zapewnia wyjątkową okazję do zapoznania się z tym, jak planety tworzą się w różnych środowiskach. Astronomowie już wiedzą, że orbity układów podwójnych mogą wypaczać i

Połączenie dwóch gwiazd doprowadziło do powstania kultowej supernowej

Obraz
Symulacje astrofizyków sugerują, że supernowa w pobliskiej galaktyce mogła powstać z eksplozji niebieskiego nadolbrzyma powstałego z połączenia się dwóch gwiazd. Asymetryczny charakter tej eksplozji może dostarczyć wskazówek, gdzie szukać nieuchwytnej gwiazdy neutronowej zrodzonej z tego gwiezdnego kataklizmu. Do eksplozji supernowej z zapadniętego jądra dochodzi, gdy jądro masywnej gwiazdy nie jest już w stanie wytrzymać własnej grawitacji. Jądro zapada się, wywołując gwałtowną eksplozję, pozostawiając gwiazdę neutronową lub czarną dziurę. W 1987 roku astronomowie zobaczyli, że w Wielkim Obłoku Magellana, jednym z najbliższych sąsiadów Drogi Mlecznej, eksploduje gwiazda. Od tego czasu naukowcy intensywnie badali następstwa tej supernowej, znanej jako SN 1987A, aby zrozumieć naturę gwiazdy progenitora i jej losy. Progenitorem tego typu supernowej jest zwykle czerwony nadolbrzym, ale obserwacje wykazały, że SN 1987A była wywołana przez gęstego niebieskiego nadolbrzyma

Tykające kosmiczne zegary pokazują ewolucję gwiazd na przestrzeni milionów lat

Obraz
Pulsary – rodzaj wirujących gwiazd neutronowych – są dobrze znane z tego, że są wykorzystane jako niezwykle stabilne zegary astrofizyczne. Ich regularność, stosowana do pomiaru pulsów radiowych, doprowadziła do jednych z najbardziej ekscytujących testów ogólnej teorii względności Einsteina i pozwoliła naukowcom zbadać zachowanie bardzo gęstej materii wewnątrz gwiazd neutronowych. Ale podobnie, jak zwykłe zegary tutaj na Ziemi, pulsary nie są idealnymi wskaźnikami czasu. Ale dokładna prędkość, z jaką wirują pulsary, wydaje się losowo wahać w niewielkich ilościach w skali miesiąca do dekady na długich przedziałach czasowych. Rotacje niewielkiej części pulsarów również gwałtownie przyspieszają – zaczynają „tykać” nieco szybciej, niż zwykle. Efekty te, zwane „szumem rotacyjnym” i „usterkami”, zmieniają się z pulsara na pulsar i mogą nam wiele powiedzieć o tym, jak gwiazdy neutronowe ewoluowały przez miliony lat. Wymaga to jednak precyzyjnego śledzenia setek obrotów pulsara prz

O pochodzeniu masywnych gwiazd

Obraz
Jasny różowy obłok i otaczające go młode gwiazdy widoczne na zdjęciu wykonanym przy pomocy Kosmicznego Teleskopu Hubble’a noszą mało inspirującą nazwę LHA 120-N 150. Ten kosmiczny region znajduje się na obrzeżach Mgławicy Tarantula, która jest największym znanym żłobkiem w lokalnym Wszechświecie. Mgławica znajduje się ponad 160 000 lat świetlnych stąd w Wielkim Obłoku Magellana, sąsiedniej galaktyce karłowatej krążącej wokół Drogi Mlecznej. Wielki Obłok Magellana doświadczył w przeszłości jednego lub kilku bliskich spotkań, prawdopodobnie z Małym Obłokiem Magellana. Oddziaływanie to wywołało epizod formowania się energetycznych gwiazd u naszego małego sąsiada – którego część jest widoczna jako Mgławica Tarantula. Znana również jako 30 Doradus lub NGC 2070, Mgławica Tarantula zawdzięcza swoją nazwę układowi jasnych płatów, które nieco przypominają nogi tarantuli. Ma blisko 1000 lat świetlnych średnicy. Bliskość, korzystne nachylenie Wielkiego Obłoku Magellana i brak pośredn

Galaktyka z aktywnym procesem gwiazdotwórczym narodzona z kolizji dwóch galaktyk karłowatych

Obraz
Nowe obserwacje dokumentują miejsce niedawnego połączenia się dwóch galaktyk karłowatych. Kiedy dwie galaktyki się łączą, kolizja może mieć dramatyczne konsekwencje – szczególnie, jeżeli galaktyki są bogate w gaz. Oddziaływanie grawitacyjne galaktyk oscylujących podczas zderzenia napędza fale uderzeniowe w ich gazie. Może to wyzwalać gwałtowne powstawanie gwiazd, wystrzeliwać dżety z aktywnych jąder galaktycznych i doprowadzić do ostatecznego powstania nowej galaktyki o drastycznie innej morfologii niż pierwotna para łączących się galaktyk. Astronomowie widzieli, jak taki dramat rozgrywa się na dużą skalę między olbrzymimi galaktykami, ale wiedzą znacznie mniej o tym, co się dzieje, gdy zderzają się galaktyki karłowate. Są one najliczniejszym rodzajem galaktyk we Wszechświecie, ale są również bardzo małe i słabe. Stanowi to poważne wyzwanie w poszukiwaniu i badaniu galaktyk karłowatych – co oznacza, że niewiele wiemy o tym, jak połączenia takich galaktyk wpływają na ogólny

Odkryto pierwsze pulsujące pozostałości po gwieździe w układzie podwójnym zaćmieniowym

Obraz
Naukowcy odkryli starą gwiazdę w układzie podwójnym zaćmieniowym, która pozwoli im uzyskać dostęp do ważnych informacji na temat historii ewolucji gwiazd podobnych do Słońca i ich ostatecznej śmierci. Odkrycie pierwszego w historii pulsującego białego karła w układzie podwójnym oznacza, że zespół może po raz pierwszy zobaczyć, jak ewolucja takiego układu wpłynęła w szczególności na wewnętrzną strukturę białego karła. Układ podwójny zaćmieniowy składa się z dwóch gwiazd krążących wokół siebie i okresowo przechodzące przed sobą, gdy widzimy je z Ziemi. Białe karły to wypalone jądra pozostałe po śmierci gwiazdy takiej, jak Słońce. Ten konkretny biały karzeł po raz pierwszy mógł dostarczyć kluczowej wiedzy na temat budowy, ewolucji i śmierci tych gwiazd. Uważa się, że większość białych karłów składa się głównie z węgla i tlenu, ale ten konkretny zbudowany jest głównie z helu. Zespół uważa, że wpływ ma na to jego towarzysz, który wcześnie przerwał ewolucję, zanim miał s

ALMA uchwyciła metamorfozę starej gwiazdy

Obraz
Międzynarodowy zespół astronomów korzystający z ALMA uchwycił moment, w którym stara gwiazda po raz pierwszy zaczyna zmieniać swoje otoczenie. Gwiazda wyrzuciła dwubiegunowe strumienie gazu, które teraz zderzają się z otaczającą materią. Wiek obserwowanego dżetu szacuje się na 60 lat. Właściwości te pomagają naukowcom zrozumieć, w jaki sposób powstają złożone kształty mgławic planetarnych. Gwiazdy podobne do naszego Słońca w ostatnim etapie swojego życia ewoluują do postaci czerwonych olbrzymów. Następnie gwiazda wypala gaz, tworząc pozostałość zwaną mgławicą planetarną. Można rozróżnić wiele kształtów mgławic planetarnych; niektóre są sferyczne, ale inne są dwubiegunowe bądź też wykazują skomplikowane struktury. Astronomowie są zainteresowani pochodzeniem tej odmiany, ale gęsty gaz i pył wyrzucone przez starą gwiazdę zaciemniają układ i utrudniają zbadanie wewnętrznych mechanizmów tego procesu. Aby rozwiązać ten problem, zespół astronomów skierował anteny ALMA na W43A, st

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Obraz
Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne. Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”. Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przeds

Zaobserwowano rzadki układ podwójny zaćmieniowy brązowych karłów

Obraz
Astronomowie opracowujący danymi z „pierwszego światła” nowo oddanego do użytku teleskopu w Chile dokonali przypadkowego odkrycia, które doprowadziło do zidentyfikowania rzadkiego zaćmieniowego układu podwójnego brązowych karłów. Brązowe karły, czasem nazywane „nieudanymi gwiazdami”, zajmują szarą strefę między gwiazdami i planetami olbrzymami. Nie są one w stanie utrzymać syntezy wodoru w hel, procesu, który pozwala świecić normalnych gwiazdom, takim jak Słońce. Wydają się jednak powstawać w taki sam sposób, jak gwiazdy, tylko z mniejszą masą. Są istotnym ogniwem w rozumieniu procesów powstawania gwiazd i planet. Odkrycie było kierowane przez międzynarodowy zespół naukowców pracujących nad projektem SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars), którego celem jest znalezienie planet krążących wokół najmniejszych gwiazd, w tym brązowych karłów. SPECULOOS znajduje planety, wykrywając okresowe spadki jasności gwiazdy, gdy planeta przechodzi przed jej ta

Odkryto nowy rodzaj pulsującej gwiazdy

Obraz
Po 40-letnich poszukiwaniach astronomowie odkrywają gwiazdę, która pulsuje tylko z jednej strony. HD74423, bo o niej mowa, jest gwiazdą 1,7 razy masywniejszą od Słońca, została odkryta w Drodze Mlecznej w odległości około 1500 lat świetlnych od Ziemi. Jest to pierwszy tego rodzaju odkryty obiekt, a naukowcy spodziewali się znaleźć wiele podobnych, gdyż poprawia się technologia wsłuchiwania się w bijące serca gwiazd. Pierwszym, co zwróciło uwagę astronomów na tę gwiazdę był fakt, że jest ona chemicznie osobliwa. Takie gwiazd zwykle są dość bogate w metale, ale ta jest dość uboga w ciężkie pierwiastki, co czyni z niej rzadki rodzaj gorącej gwiazdy. Istnienie takiej gwiazdy przewidziano teoretycznie już w latach 80. ubiegłego stulecia. Po czterdziestu latach poszukiwań, w końcu ją odnaleziono.  Gwiazdy pulsujące znane są w astronomii od dawna. Nasze własne Słońce także pulsuje. Te pulsacje powierzchni gwiazdy występują zarówno u młodych jak i u starych gwiazdy i mogą