11 listopada 2015

Hubble odkrywa, że gwiazdy zgrubienia centralnego galaktyki mogą być starsze od gwiazd dysku

Korzystając z danych uzyskanych z Kosmicznego Teleskopu Hubble’a astronomowie odkryli plany wczesnego etapu budowy naszej Galaktyki.

Zaglądając w głąb zgrubienia centralnego ośrodka gwiazd Drogi Mlecznej naukowcy Hubble’a odkryli po raz pierwszy populację starożytnych białych karłów - tlących się pozostałości po niegdyś tętniących życiem gwiazdach, które kiedyś zajmowały jądro Galaktyki. Odnalezienie tych resztek może wreszcie dać astronomom cenne wskazówki dotyczące tego, w jaki sposób powstała nasza Galaktyka na długo przed tym, jak narodziły się Ziemia i Słońce.

Białe karły zawierają informacje dotyczące historii minionej epoki. Są cennym źródłem informacji na temat gwiazd, które istniały 12 miliardów lat temu, czyli niedługo po powstaniu Wszechświata. Później gwiazdy te uległy spaleniu przekształcając się w białe karły. Analiza danych uzyskanych z Hubble’a popiera tezę, że centralne zgrubienie Drogi Mlecznej powstało jako pierwsze, później kolejne gwiazdy rodziły się bardzo szybko - w mniej niż 2 miliardy lat. Reszta rozległego dysku galaktycznego gwiazd drugiej i trzeciej generacji rosła wolniej na obrzeżach otaczających zgrubienie centralne.

Ważnym jest, byśmy obserwowali zgrubienie centralne naszej Galaktyki, gdyż jest to jedyny taki obszar, który możemy badać bardzo szczegółowo. Owszem, możemy obserwować zgrubienia centralne innych galaktyk, ale nie jesteśmy w stanie analizować tak słabych gwiazd, jakimi są białe karły. Zgrubienie centralne Drogi Mlecznej zawiera gwiazdy mające masę stanowiącą niemal ¼ masy całej Galaktyki. Charakterystyka właściwości gwiazd zgrubienia może dostarczyć istotnych informacji dotyczących zrozumienia powstania całej Drogi Mlecznej oraz wielu innych, jej podobnych, bardziej odległych galaktyk.

Badanie Hubble’a ukazało również nieco więcej małomasywnych gwiazd w zgrubieniu, w porównaniu do tych z populacji w dysku galaktycznym. Sugeruje to, że środowisko zgrubienia może być różne od środowiska w dysku, czego efektem jest różny mechanizm tworzenia się gwiazd. Obserwacje były na tyle czułe, że astronomowie użyli danych by wykryć słaby blask białych karów. Zespół oparł swoje wyniki na analizie 70 najgorętszych karłów wykrywalnych przez HST w małym rejonie zgrubienia spośród dziesiątków tysięcy gwiazd.

Białe karły są małe i ekstremalnie gęste. Mają rozmiary Ziemi ale są 200.000 razy bardziej gęste. Łyżeczka materii białego karła ważyłaby około 15 ton. Ich małe rozmiary powodują, że są wyzwaniem obserwacyjnym. Astronomowie wykorzystują ostre zdjęcia z Hubble’a by oddzielić gwiazdy zgrubienia od niezliczonych gwiazd pierwszoplanowych naszej Galaktyki, śledząc ich ruch w czasie. Zespół wykonał tę pracę analizując zdjęcia z Hubble’a tego samego obszaru 240.000 gwiazd uzyskane na przestrzeni 10 lat. Długi horyzont czasowy pozwolił astronomom na dokonanie bardzo precyzyjnych pomiarów ruchu gwiazd i wybranie 70.000 gwiazd ze zgrubienia centralnego. Znajdujące się tam gwiazdy poruszają się w innym tempie niż gwiazdy w dysku, co pozwala na ich zidentyfikowanie.

Astronomowie zidentyfikowali białe karły analizując kolory gwiazd zgrubienia i porównując je z założeniami teoretycznymi. Niewielkie białe karły ukazują się jako bardziej niebieskie w stosunku do gwiazd podobnych do Słońca.

Źródło: Hubblesite

Urania - Postępy Astronomii

1 listopada 2015

Ogromne planety w dyskach protoplanetarnych nowo narodzonych gwiazd

Zespół amerykańskich astronomów wysunął hipotezę, że spiralne dyski okrążające młode gwiazdy mogą być dowodem na to, że wewnątrz tych dysków krążą ogromne, niewidoczne jeszcze planety.

Chociaż astronomowie skatalogowali tysiące planet krążących wokół innych gwiazd, zaobserwowanie początkowego stadium tworzenia się egzoplanet jest bardzo trudne, gdyż powstają one w dysku gazu i pyłu otaczającego nowo narodzoną gwiazdę. Dysk ten nazywamy protoplanetarnym.

Wnioski, że planety mogą zdradzać swoją obecność modyfikując dysk protoplanetarny w dużej mierze opierają się na szczegółowym modelowaniu komputerowym pokazującym, w jaki sposób ewoluuje dysk gazowo-pyłowy wokół nowo narodzonej gwiazdy. Modelowanie to zostało przeprowadzone przez dwa zespoły NASA pod kierownictwem Ruobinga Donga z Lawrence Berkeley National Laboratory i Zhaohuana Zhu z Princeton University. Wyniki ich badań zostały opublikowane 5 sierpnia w The Astrophysical Journal Letters.

Trudno jest dostrzec podejrzewaną planetę w jasnym dysku protoplanetarnym otaczającym młodą gwiazdę. Jeżeli na podstawie badań astronomowie mogą określić cechy struktury dysku oraz przekonać się, że są one stworzone przez planetę, której nie widać, byłby to niezbitym dowodem na to, jak powstają planety. Taka metoda odkrywania planet pozasłonecznych różni się znacznie od tych stosowanych do tej pory. Może ona pomóc astronomom odkrywać planety w początkowych fazach cyklu tworzenia się oraz określić kiedy, jak i gdzie powstają.

Luki i pierścienie obserwowane w innych dyskach protoplanetarnych sugerują niewidoczne planety osadzone w dysku. Jednak luki, prawdopodobnie “oczyszczone” przez grawitację planety często nie pomagają określić jej położenia, również dlatego, że układ wielu planet może tworzyć wspólną lukę co sprawia, że trudno jest oszacować także ich ilość i masy.

Naziemne teleskopy sfotografowały dwa ogromne spiralne ramiona wokół dwóch młodych gwiazd SAO 206462 i MWC 758. Kilka innych pobliskich gwiazd także wykazuje jakby spirlane struktury. Jeżeli dysk protoplanetarny był bardzo masywny, miał wystarczająco dużo własnej grawitacji by stać się niestabilnym i stworzyć wzory przypominające fale. Jednak dyski wokół SAO 206462 i MWC 758 mają masę prawdopodobnie stanowiącą kilka procent masy swoich macierzystych gwiazd a zatem są stabilne grawitacyjnie.

Zespół stworzył symulację komputerową dynamiki dysku oraz tego, w jaki sposób promieniowanie gwiazdy się rozchodzi w dysku zawierającym planetę. Modelowanie to tworzy struktury spiralne bardzo podobne do tych obserwowanych. Wzajemne oddziaływanie grawitacyjne pomiędzy dyskiem i planetą tworzy regiony, w których gęstość gazu i pyłu wzrasta. Rotacja różnicowa dysku wokół gwiazdy rozmywa te zbyt gęste regiony w spiralne fale. Teraz astronomowie wiedzą, w jaki sposób planety tworzą ramiona spiralne dysku. Symulacje te również wskazują, że ramiona spiralne dostarczają informacji nie tylko na temat niewidocznej planety ale również dotyczące jej położenia i masy. Wynika z nich także, że gdyby nie było tam planet, dysk byłby “gładki”. Aby ogromne ramiona spiralne widoczne w układach SAO 206462 i MWC 758 mogły powstać, dyski powinny zawierać ogromne planety, przynajmniej dziesięciokrotnie masywniejsze niż Jowisz, największa planeta Układu Słonecznego.

Pierwsza planeta krążąca wokół zwykłej gwiazdy (nie pulsara) została odkryta w 1995 r. Dzięki naziemnym teleskopom oraz misji Kepler astronomowie skatalogowali już kilka tysięcy egzoplanet. Ponieważ jednak planety te znajdują się w dość starych układach gwiazdowych, nie daje to bezpośrednich wskazówek, w jaki sposób one powstają. Jest wiele teorii dotyczących tworzenia się planet, jednak jest bardzo niewiele prac bazujących na bezpośrednich obserwacjach potwierdzających te hipotezy.

Źródło: NASA

Urania-Postępy Astronomii

Gwiazda z dyskiem pyłowym zasilanym przez otaczającą materię

Międzynarodowy zespół astronomów publikuje obraz młodej gwiazdy z otaczającym ją dyskiem pyłowym, który wciąż jest zasilany z otoczenia. Zja...