30 września 2020

Odkryto drugą płaszczyznę Układu Słonecznego

Badanie ruchów komet wskazuje, że Układ Słoneczny ma drugą płaszczyznę wyrównania. Analityczne badanie orbit komet długookresowych pokazuje, że aphelia komet, punkty, w których znajdują się najdalej od Słońca, mają tendencję do opadania w pobliżu dobrze znanej płaszczyzny ekliptyki, na której znajdują się planety, lub nowo odkrytej „pustej ekliptyki”. Ma to ważne implikacje dla modeli dotyczących tego, jak komety powstawały pierwotnie w Układzie Słonecznym.


W Układzie Słonecznym planety i większość ciał poruszają się mniej więcej w tej samej płaszczyźnie orbitalnej, zwanej ekliptyką, ale są wyjątki, takie jak komety. Komety, zwłaszcza długookresowe, którym wykonanie jednego pełnego obiegu wokół Słońca zajmuje dziesiątki tysięcy lat, nie są ograniczone do obszaru w pobliżu ekliptyki; są postrzegane jako przychodzące i odchodzące w różnych kierunkach.

Modele formowania się Układu Słonecznego sugerują, że nawet długookresowe komety pierwotnie powstały w pobliżu ekliptyki, a później, w wyniku oddziaływań grawitacyjnych, w szczególności z gazowymi olbrzymami, zostały rozproszone na orbity obserwowane obecnie. Ale nawet przy rozpraszaniu, aphelium komety powinno pozostać blisko ekliptyki. Do wyjaśnienia obserwowanych różnic potrzebne są inne siły zewnętrzne. Układ Słoneczny nie istnieje w izolacji; pole grawitacyjne Galaktyki Drogi Mlecznej, w której się znajduje, również wywiera niewielki, ale nie niezauważalny, wpływ. Arika Higuchi, adiunkt na Uniwersytecie Zdrowia Pracy i Środowiska w Japonii, zbadała wpływ grawitacji Galaktyki na komety długookresowe poprzez analityczne badanie równań rządzących ruchem orbitalnym. Pokazała, że gdy weźmie się pod uwagę grawitację Galaktyki, aphelium komet długookresowych ma tendencję do gromadzenia się wokół dwóch płaszczyzn. Najpierw dobrze znana ekliptyka, ale także druga „pusta ekliptyka”. Ekliptyka jest nachylona w stosunku do dysku Drogi Mlecznej o około 60o. Pusta ekliptyka również jest nachylona pod kątem 60o ale w przeciwnym kierunku. Higuchi nazywa to „pustą ekliptyką” w oparciu o nomenklaturę matematyczną, ponieważ początkowo nie zawiera ona żadnych obiektów, a dopiero później jest wypełniona rozproszonymi kometami.

Higuchi potwierdziła swoje przewidywania, porównując je z obliczeniami numerycznymi wykonanymi częściowo na klastrze PC w Center for Computational Astrophysics NAOJ. Porównanie wyników analitycznych i obliczeniowych z danymi dla komet długookresowych skatalogowanych w bazie danych NASA JPL Small Body Database wykazało, że rozkład ma dwa szczyty, w pobliżu ekliptyki i pustej ekliptyki, zgodnie z przewidywaniami. Jest to mocna wskazówka, że modele formowania są poprawne a komety długookresowe uformowały się na ekliptyce. Jednak Higuchi ostrzega: „Ostre szczyty nie znajdują się dokładnie na ekliptyce lub pustych płaszczyznach ekliptyki, ale w ich pobliżu. Badanie rozmieszczenia obserwowanych małych ciał musi obejmować wiele czynników. W przyszłości naszą pracą będzie szczegółowe badanie rozmieszczenia komet długookresowych. Projekt badania całego nieba, zwany LSST (Legacy Survey of Space and Time), dostarczy cennych informacji do tego badania.”

Opracowanie:
Agnieszka Nowak

Źródło:

29 września 2020

Para masywnych młodych gwiazd owinięta w słoną parę wodną

Astronomowie zauważyli parę masywnych młodych gwiazd rosnących w słonej kosmicznej zupie. Każda z gwiazd jest osłonięta gazowym dyskiem, który zawiera cząsteczki chlorku sodu, powszechnie znanego jako sól kuchenna, oraz podgrzaną parę wodną. Analizując emisje radiowe z soli i wody, zespół odkrył, że dyski rotują w przeciwnych kierunkach. Jest to drugi przypadek wykrycia soli wokół młodych masywnych gwiazd, co zapowiada, że sól jest doskonałym markerem do badania bezpośredniego otoczenia olbrzymich młodych gwiazd.



We Wszechświecie są gwiazdy o różnych masach. Mniejsze mogą mieć zaledwie 1/10 masy Słońca, podczas gdy większe nawet dziesięć lub więcej mas Słońca. Niezależnie od masy wszystkie gwiazdy powstają w kosmicznych obłokach gazu i pyłu. Astronomowie chętnie badali pochodzenie gwiazd; jednak proces powstawania masywnych gwiazd pozostaje niejasny. Dzieje się tak, ponieważ miejsca ich formowania się znajdują się dalej od Ziemi, a młode masywne gwiazdy otaczają ogromne obłoki o skomplikowanych strukturach. Te dwa fakty uniemożliwiają astronomom uzyskanie wyraźnego obrazu młodych masywnych gwiazd oraz miejsc ich powstawania.

Zespół astronomów kierowany przez Kei Tanakę z Narodowego Obserwatorium Astronomicznego Japonii wykorzystał moc ALMA do zbadania środowiska, w którym formują się masywne gwiazdy. Obserwowali masywny, młody układ podwójny IRAS 16547-4247 i wykryli emisje radiowe z wielu różnych cząsteczek. W szczególności chlorek sodu (NaCl) i gorąca woda (H2O) zostały znalezione związane w pobliżu każdej gwiazdy, tj. dysku okołogwiazdowym. Z drugiej strony inne cząsteczki, takie jak cyjanek metylu (CH3CN), które astronomowie często obserwowali w poprzednich badaniach masywnych młodych gwiazd, zostały wykryte dalej.

„Chlorek sodu jest nam znany jako sól kuchenna, ale nie jest to powszechny związek we Wszechświecie. To było dopiero drugie wykrycie chlorku sodu wokół młodych masywnych gwiazd. Pierwszy przykład dotyczył Orion KL Source I, ale jest to tak osobliwe źródło, że nie byliśmy pewni, czy sól jest właściwa do oglądania dysków gazowych wokół masywnych gwiazd. Jednak nasze wyniki potwierdziły, że sól jest właściwie dobrym markerem. Ponieważ małe gwiazdy nabierają masy poprzez dyski, ważne jest, aby zrozumieć, w jaki sposób młode gwiazdy rosną” – mówi Tanaka.

Dalsze badanie dysków ukazuje interesującą wskazówkę dotyczącą pochodzenia pary. „Znaleźliśmy niepewny znak, że dyski rotują w przeciwnych kierunkach” – wyjaśnia Yichen Zhang, badacz z RIKEN. Jeżeli gwiazdy rodzą się jako układ podwójny w dużym wspólnym dysku gazowym, dyski naturalnie rotują w tym samym kierunku. „Rotacja dysków w przeciwnych kierunkach może wskazywać, że te dwie gwiazdy nie są rzeczywistymi bliźniakami, ale parą nieznajomych, które uformowały się oddzielnie i później połączyły.” Masywne gwiazdy prawie zawsze mają jakichś towarzyszy, dlatego kluczowe jest zbadanie pochodzenia masywnych układów podwójnych. Zespół oczekuje, że dalsze obserwacje i analizy dostarczą bardziej wiarygodnych informacji na temat tajemnic ich powstawania.

Obecność podgrzanej pary wodnej i chlorku sodu, uwolnionych w wyniku niszczenia cząsteczek pyłu, sugeruje gorący i dynamiczny charakter dysków wokół młodych masywnych gwiazd. Co ciekawe, badania meteorytów wskazują, że dysk protogwiazdowy, z którego powstał Układ Słoneczny, również doświadczył wysokich temperatur, w których cząsteczki pyłu parowały. Astronomowie będą w stanie prześledzić te molekuły uwalniane z cząsteczek pyłu, korzystając z obecnie planowanej nowej generacji VLA (Very Large Array). Zespół przewiduje, że może nawet uzyskać wskazówki pozwalające zrozumieć pochodzenie naszego Układu Słonecznego, badając gorące dyski z solą i gorącą parą wodną.

Układ gwiazd, o którym mowa, IRAS 16547-4247, znajduje się w odległości 9500 lat świetlnych od nas w konstelacji Skorpiona. Szacuje się, że całkowita masa gwiazd stanowi 25 mas Słońca i są otoczone olbrzymim obłokiem o masie 10 000 Słońc.

Opracowanie:
Agnieszka Nowak

Źródło:

28 września 2020

Astronomowie modelując określają, w jaki sposób dyski galaktyczne ewoluują tak gładko

Opracowując lepsze symulacje komputerowe, naukowcy ustalili, że rozpraszanie gwiazd z ich orbit pod wpływem grawitacji masywnych skupisk w galaktykach prowadzi do powszechnego wyglądu dysków galaktyk – jasnych centrów zanikających do ciemnych krawędzi.


Naukowcy z Iowa State University, University of Wisconsin-Madison i IBM Research przeprowadzili zaawansowane badania, które rozpoczęli prawie 10 lat temu. Początkowo koncentrowali się na tym, jak masywne skupiska młodych galaktyk wpływają na orbity gwiazd i tworzą dyski galaktyczne z jasnymi jądrami przechodzącymi do ciemnych krawędzi.

Obecnie grupa jest współautorem nowego artykułu, w którym ich pomysły na temat tworzenia się dysków dotyczą nie tylko młodych galaktyk. To również proces, który jest solidny i uniwersalny we wszystkich rodzajach galaktyk. W końcu dyski galaktyczne są powszechne w galaktykach spiralnych, eliptycznych, karłowatych i niektórych galaktykach nieregularnych.

Jak astrofizycy mogą to wyjaśnić?

Używając realistycznych modeli do śledzenia rozpraszania gwiazd w galaktykach, „Czujemy, że mamy znacznie głębsze zrozumienie procesów fizycznych, które rozwiązują ten kluczowy problem sprzed 50 lat” – powiedział Curtis Struck, profesor fizyki i astronomii na Iowa State University.

Naukowcy odkryli, że impulsy grawitacyjne z masywnych skupisk zmieniają orbity gwiazd. W rezultacie zmienia się ogólny rozkład gwiazd w dysku, a wykładniczy profil jasności jest odbiciem tego nowego rozkładu gwiazd.

Najnowsze modelowanie komputerowe jest zwieńczeniem wielu lat ulepszeń modeli. Wcześniejsze z nich traktowały siły grawitacyjne składników galaktyk bardziej w przybliżeniu, a naukowcy badali mniej przypadków.

Teraz pokazują one, jak gromady gwiazd i skupiska gazów międzygwiazdowych w galaktykach mogą zmieniać orbity pobliskich gwiazd. Niektóre zdarzenia związane z rozpraszaniem gwiazd znacząco zmieniają orbity gwiazd, a nawet przechwytują niektóre gwiazdy w pętle wokół masywnych skupisk, zanim te zdążą uciec do ogólnego przepływu dysku galaktycznego. Wiele innych zjawisk rozpraszających jest mniej potężnych, z mniejszą liczbą rozproszonych gwiazd, a orbity pozostają bardziej kołowe.

„Natura rozproszenia jest bardziej złożona, niż wcześniej rozumieliśmy. Pomimo całej złożoności w małych skalach, nadal daje on średnią do płynnego rozkładu światła w dużych skalach” – powiedział Struck.

Jak wynika z artykułu, modele mówią również coś o czasie potrzebnym do uformowania się tych wykładniczych dysków galaktycznych. Rodzaje skupisk i początkowe gęstości dysków wpływają na szybkość ewolucji, ale nie na ostateczną płynność jasności.

W tym przypadku szybkość jest pojęciem względnym, ponieważ ramy czasowe dla tych procesów wynoszą miliardy lat.

Opracowanie:
Agnieszka Nowak

Źródło:

27 września 2020

LTT 9779b – planeta o nieprawdopodobnej naturze

Międzynarodowy zespół astronomów odkrył pierwszą planetę typu ultra gorący Neptun krążącą wokół pobliskiej gwiazdy LTT 9779.


Wspominana egzoplaneta krąży tak blisko swojej gwiazdy, że jej rok trwa zaledwie 19 ziemskich godzin, co oznacza, że promieniowanie gwiazdowe ogrzewa jej powierzchnię do ponad 1700o C.

W tych temperaturach ciężkie pierwiastki, takie jak żelazo, mogą ulegać jonizacji w atmosferze, a cząsteczki dysocjacji, co zapewnia wyjątkowe laboratorium do badań chemii planet poza Układem Słonecznym.

Chociaż planeta waży dwa razy więcej niż Neptun, jest również nieco większa i ma podobną gęstość. Dlatego LTT 9779b powinna mieć ogromne jądro o masie ok. 28 mas Ziemi i atmosferę stanowiącą około 9% całkowitej masy planety.

Sam układ ma mniej więcej połowę wieku naszego Układu Słonecznego, 2 mld lat, a biorąc pod uwagę intensywne napromieniowanie, planeta podobna do Neptuna nie powinna utrzymywać swojej atmosfery przez tak długi czas. Stanowi to intrygującą zagadkę do rozwiązania: w jaki sposób powstał tak nieprawdopodobny układ?

LTT 9779 to podobna do Słońca gwiazda znajdująca się w odległości 260 lat świetlnych, z astronomicznego punktu widzenia – rzut kamieniem. Jest bardzo bogata w metale, a jej atmosfera zawiera dwa razy więcej żelaza niż Słońce. Może to być kluczowy wskaźnik, że planeta pierwotnie była znacznie większym gazowym olbrzymem, ponieważ ciała te preferencyjnie tworzą się w pobliżu gwiazd o największej zawartości żelaza.

Wstępne wskazówki dotyczące istnienia planety uzyskano dzięki satelicie TESS w ramach jej misji odkrywania małych planet tranzytowych okrążających pobliskie i jasne gwiazdy na całym niebie. Takie tranzyty można znaleźć, gdy planeta przechodzi bezpośrednio przed swoją gwiazdą macierzystą, blokując część jej światła, a ilość zablokowanego światła ujawnia rozmiar obiektu towarzyszącego.

Sygnał tranzytowy został szybko potwierdzony na początku 2018 roku jako pochodzący od ciała o masie planetarnej, na podstawie obserwacji wykonanych za pomocą instrumentu High Accuracy Radial-velocity Planet Searcher (HARPS), zamontowanego na 3,6-metrowym teleskopie w Obserwatorium ESO w La Silla. HARPS wykorzystuje metodę drgania Dopplera do pomiaru mas planet i charakterystyk orbitalnych, takich jak ich okres. Gdy wykryje się, że obiekty się przemieszczają, można zorganizować pomiary dopplerowskie, aby spróbować skutecznie potwierdzić naturę planet. W przypadku LTT 9779b zespołowi udało się potwierdzić jej obecność już po tygodniu obserwacji.

Profesor James Jenkins z Wydziału Astronomii na Universidad de Chile, który kierował zespołem, powiedział: „Odkrycie LTT 9779b na tak wczesnym etapie misji TESS było całkowitym zaskoczeniem; ryzykowny krok, który się opłacił. Większość zdarzeń tranzytowych z okresami krótszymi niż jeden dzień to tzw. błąd pierwszego rodzaju (false positives), zwykle podwójne zaćmieniowe gwiazdy tła.”

LTT 9779b jest faktycznie rzadkim obiektem, istniejącym w słabo zaludnionym regionie przestrzeni planetarnej. Znajduje się na tak zwanej pustyni Neptunowej, regionie pozbawionym podobnej populacji planet. Chociaż lodowe olbrzymy wydają się być dość powszechnym produktem ubocznym procesu formowania się planet, nie dzieje się to zbyt blisko ich gwiazd macierzystych. Naukowcy uważają, że planety te zostają pozbawione atmosfery w kosmicznym czasie, kończąc jako tak zwane planety o bardzo krótkim okresie orbitalnym.

Obliczenia dr. Georga Kinga z Wydziału Fizyki Uniwersytetu w Warwick potwierdziły, że LTT 9779b powinna zostać pozbawiona atmosfery w procesie zwanym fotoodparowaniem. Intensywne promieniowanie rentgenowskie i UV pochodzące od młodej gwiazdy macierzystej podgrzały górną warstwę atmosfery planety i powinny były rozdmuchać jej gazy w kosmos. Z drugiej strony obliczenia dr. Kinga wykazały, że nie było wystarczającej ilości nagrzewania rentgenowskiego, aby LTT 9779b mogła wystartować jako znacznie masywniejszy gazowy olbrzym. Efektem odparowania fotoelektrycznego powinna być albo naga skała albo gazowy olbrzym. Ponieważ jest inaczej, astronomowie muszą wyjaśnić historię tej planety.

Jak zauważył prof. Jenkins: „Modele struktur planetarnych mówią nam, że planeta jest światem zdominowanym przez olbrzymie jądro, ale co najważniejsze, powinien istnieć gaz atmosferyczny o masie dwóch-trzech mas Ziemi. Ale jeżeli gwiazda jest tak stara, dlaczego w ogóle atmosfera istnieje? Cóż, gdyby LTT 9779b rozpoczęła swoje życie jako gazowy olbrzym, to proces wylewu z powierzchni Roche’a mógłby przenieść znaczące ilości gazu atmosferycznego na gwiazdę.”

Proces wylewu z powierzchni Roche'a to proces, w którym planeta zbliża się tak bardzo do swojej gwiazdy, że jej silniejsza grawitacja może przechwycić zewnętrzne warstwy planety, powodując jej przeniesienie się na gwiazdę, a tym samym znaczne zmniejszenie masy planety. Modele przewidują wyniki podobne do tych z układu LTT 9779, ale również wymagają dopracowania.

Możliwe też, że LTT 9779b dotarła na swoją obecną orbitę dość późno, a więc nie miała dość czasu na pozbycie się atmosfery. Zderzenia z innymi planetami w układzie mogły wyrzucić ją do wewnątrz w kierunku gwiazdy. Ponieważ jest to tak wyjątkowy i rzadki świat, bardziej egzotyczne scenariusze mogą być wiarygodne.

Ponieważ planeta wydaje się posiadać znaczącą atmosferę i dlatego, że krąży wokół stosunkowo jasnej gwiazdy, przyszłe badania atmosfery planetarnej mogą odkryć niektóre z tajemnic związanych z tym, jak takie planety powstają, jak ewoluują a także szczegóły tego, z czego są zbudowane. Jenkins podsumował: „Planeta jest bardzo gorąca, co motywuje do poszukiwania pierwiastków cięższych od wodoru i helu, a także zjonizowanych jąder atomowych. To otrzeźwiające myślenie, że ta ‘nieprawdopodobna planeta’ jest prawdopodobnie tak rzadka, że nie znajdziemy innego podobnego laboratorium do szczegółowych badań natury ultra gorących Neptunów. Dlatego musimy wydobyć z tego nieoszlifowanego diamentu jak najwięcej wiedzy, obserwując go w nadchodzących latach zarówno przy pomocy instrumentów kosmicznych jak i naziemnych.”

Opracowanie:
Agnieszka Nowak

Źródło:

25 września 2020

Woda ukryta w gwiezdnym pyle

Materia pomiędzy gwiazdami w galaktyce – w tak zwanym ośrodku międzygwiazdowym – składa się nie tylko z gazu, ale także z dużej ilości pyłu. W pewnym momencie w takim środowisku powstały gwiazdy i planety, ponieważ cząsteczki pyłu mogą się zlepiać i łączyć w ciała niebieskie. W tych cząsteczkach zachodzą również ważne procesy chemiczne, z których pojawiają się złożone organiczne – a być może także prebiotyczne – molekuły. Jednak aby te procesy były możliwe, musi być obecna woda. W szczególnie zimnych kosmicznych środowiskach woda występuje w postaci lodu. Jednak do tej pory związek między lodem i pyłem w tych rejonach kosmosu był niejasny. Zespół naukowców udowodnił, że cząsteczki pyłu i lód są zmieszane.


„Do tej pory nie wiedzieliśmy, czy lód jest fizycznie oddzielony od pyłu, czy też miesza się z pojedynczymi jego cząsteczkami. Porównaliśmy widma wytworzonych w laboratorium krzemianów, lodu wodnego i ich mieszanin z astronomicznymi widmami otoczek protogwiazdowych i dysków protoplanetarnych. Ustaliliśmy, że widma są zgodne, jeżeli pył krzemianowy i lód wodny zmieszają się w tych środowiskach” – wyjaśnia dr Alexey Potapov z Uniwersytetu w Jenie.

Astronomowie mogą uzyskać cenne informacje z tych danych. „Musimy zrozumieć różne warunki fizyczne w różnych środowiskach astronomicznych, aby ulepszyć modelowanie procesów fizykochemicznych w kosmosie” – mówi Potapov. Wyniki te umożliwiłyby badaczom lepsze oszacowanie ilości materii i dokładniejsze oszacowanie dotyczące temperatur w różnych regionach ośrodków międzygwiazdowych i okołogwiazdowych.

Dzięki eksperymentom i porównaniom naukowcy z Uniwersytetu w Jenie zaobserwowali również, co dzieje się z wodą, gdy temperatura wzrasta, a lód opuszcza ciało stałe, z którym jest związany i przechodzi w fazę gazową przy temperaturze około 180 Kelwinów (-93o Celsjusza). 

Niektóre cząsteczki wody są tak silnie związane z krzemianem, że pozostają na powierzchni lub wewnątrz cząsteczek pyłu. Naukowcy podejrzewają, że taka „uwięziona woda” istnieje również na lub w cząsteczkach pyłu w kosmosie. A przynajmniej tak sugeruje porównanie widm uzyskanych z eksperymentów laboratoryjnych i widm w tak zwanym rozproszonym środowisku międzygwiazdowym. Badacze znaleźli wyraźne oznaki, że istnieją tam uwięzione cząsteczki wody.

Istnienie takiej wody w stanie stałym sugeruje, że na cząsteczkach pyłu w rozproszonym ośrodku międzygwiazdowym mogą być również obecne złożone cząsteczki. Jeżeli na takich cząsteczkach obecna jest woda, droga do złożonych cząsteczek organicznych nie jest długa. Dzieje się tak dlatego, że cząsteczki pyłu zwykle składają się między innymi z węgla, który w połączeniu z wodą i pod wpływem promieniowania UV, takiego jak występujące w takim środowisku, sprzyja na przykład tworzeniu się metanolu. W tych rejonach ośrodka międzygwiazdowego obserwowano już związki organiczne, ale do tej pory nie było wiadomo, skąd się wzięły.

Obecność wody w stanie stałym może również odpowiedzieć na pytania dotyczące innego pierwiastka: chociaż znamy ilość tlenu w ośrodku międzygwiazdowym, wcześniej nie mieliśmy informacji o tym, gdzie dokładnie znajduje się ⅓ tego pierwiastka. Nowe wyniki badań sugerują, że woda w stanie stałym w tych krzemianach jest ukrytym rezerwuarem tlenu.

Ponadto „uwięziona woda” może pomóc w zrozumieniu, w jaki sposób pył się gromadzi, gdyż może sprzyjać sklejaniu się ze sobą mniejszych cząsteczek w celu utworzenia większych cząsteczek. Efekt ten może zadziałać nawet podczas tworzenia się planet. „Jeżeli uda nam się udowodnić, że ‘uwięziona woda’ istniała – lub może istnieć – w budulcach Ziemi, być może pojawią się nawet nowe odpowiedzi na pytanie, w jaki sposób woda dotarła na Ziemię” – mówi Alexey Potapov. Ale na razie są to tylko przypuszczenia, do których wyjaśnienia naukowcy z Jeny chcą w przyszłości dążyć.

Opracowanie:
Agnieszka Nowak

Źródło:

24 września 2020

Odkryto pierwszą planetę krążącą wokół białego karła

Międzynarodowy zespół astronomów korzystający z satelity TESS i teleskopu Spitzera poinformował, że być może znaleziono pierwszą planetę blisko orbitującą wokół białego karła, gęstej pozostałości po gwieździe podobnej do Słońca, ok. 40% większej od Ziemi.


Obiekt wielkości Jowisza, nazwany WD 1856 b, jest około siedem razy większy niż biały karzeł, nazwany WD 1856+534. Okrąża ten gwiezdny żużel w czasie 34 godziny, ponad 60 razy szybciej niż Merkury Słońce.

Jakimś sposobem WD 1856 b udało się zbliżyć znacznie do białego karła i przetrwać. Proces tworzenia białego karła niszczy pobliskie planety, a wszystko, co później zbliży się za bardzo, jest zwykle rozrywane na strzępy przez potężną grawitację gwiazdy. Nadal pozostaje wiele pytań dotyczących tego, w jaki sposób WD 1856 b dotarła do obecnego miejsca i przetrwała.

TESS monitoruje duże obszary nieba, zwane sektorami, przez blisko miesiąc. Takie długie przypatrywanie się pozwala satelicie znaleźć egzoplanety, czyli światy poza naszym Układem Słonecznym, dzięki uchwyceniu zmian jasności gwiazd wywołanych tranzytem planet przed ich tarczą.

TESS zaobserwował WD 1856 b w odległości około 80 lat świetlnych od nas, w konstelacji nieba północnego Smok. Planeta krąży wokół chłodnego, cichego białego karła, który ma około 18 000 km średnicy, może mieć nawet 10 mld lat i jest odległym członkiem układu potrójnego gwiazd.

Kiedy gwieździe podobnej do Słońca zabraknie paliwa, pęcznieje setki do tysięcy razy w stosunku do pierwotnego rozmiaru, tworząc chłodniejszego czerwonego olbrzyma. Ostatecznie wyrzuca zewnętrzne warstwy gazu, tracąc około 80% swojej masy. Pozostałe po niej gorące jądro staje się białym karłem. Wszelkie pobliskie obiekty są zwykle pochłaniane i spalane podczas tego procesu, który w tym układzie obejmowałby WD 1856 b na jego obecnej orbicie. Andrew Vanderburg, asystent profesora astronomii na Uniwersytecie Wisconsin-Madison, i jego koledzy szacują, że możliwa planeta musiała powstać co najmniej 50 razy dalej od swojego obecnego położenia.

„Od dawna wiemy, że po narodzinach białych karłów odległe małe obiekty, takie jak asteroidy i komety, mogą rozproszyć się do wewnątrz w kierunku tych gwiazd. Zwykle są rozrywane przez silną grawitację białego karła i zmieniają się w dysk szczątków. Dlatego byłem tak podekscytowany, kiedy Andrew powiedział mi o tym układzie. Widzieliśmy wskazówki, że planety również mogą rozpraszać się do wewnątrz, ale wydaje się, że po raz pierwszy widzieliśmy planetę, która wyglądała na taką, co przetrwała całą podróż” – mówi współautor Siyi Xu, asystent astronoma z międzynarodowego Obserwatorium Gemini w Hilo na Hawajach.

Zespół sugeruje kilka scenariuszy, które mogły skierować WD 1856 b na eliptyczną orbitę wokół białego karła. Trajektoria ta z czasem stałaby się bardziej kołowa, gdy grawitacja gwiazdy rozciągnęła by obiekt, tworząc ogromne przypływy, które rozpraszały jego energię orbitalną.

„Najbardziej prawdopodobny przypadek dotyczy kilku innych ciał wielkości Jowisza w pobliżu orbity WD 1856 b. Grawitacyjny wpływ tak dużych obiektów może łatwo doprowadzić do niestabilności, której potrzeba, aby wrzucić planetę do wewnątrz. Ale w tym momencie nadal mamy więcej teorii niż punktów danych” – powiedziała współautorka badania Juliette Becker z CalTech.

Inne możliwe scenariusze obejmują stopniowe przyciąganie grawitacyjne dwóch innych gwiazd w układzie, czerwonych karłów G229-20 A i B, trwające przez miliardy lat oraz przelot zbuntowanej gwiazdy zakłócający układ. Zespół Vanderburga uważa, że te i inne wyjaśnienia są mniej prawdopodobne, ponieważ wymagają precyzyjnie dostrojonych warunków, aby osiągnąć takie same efekty, jak potencjalne olbrzymie planety towarzyszące.

Obiekty rozmiarów Jowisza mogą zajmować olbrzymi zakres mas, od planet zaledwie kilka razy masywniejszych od Ziemi po małomasywne gwiazdy tysiące razy masywniejsze od Ziemi. Inne to brązowe karły, które znajdują się na granicy pomiędzy planetą a gwiazdą. Zwykle naukowcy w celu pomiaru masy obiektu zwracają się do obserwacji prędkości radialnych, co może wskazywać na jego skład i naturę. Metoda ta polega na badaniu, w jaki sposób orbitujący obiekt „przeciąga” swoją gwiazdę i zmienia barwę jej światła. Ale w tym przypadku biały karzeł jest tak stary, że jego światło stało się zarówno zbyt słabe jak i pozbawione cech charakterystycznych, aby naukowcy mogli wykryć zauważalne zmiany.

Zamiast tego zespół obserwował układ w podczerwieni za pomocą teleskopu Spitzer, zaledwie kilka miesięcy przed wycofaniem go z eksploatacji. Gdyby WD 1856 b był brązowym karłem lub gwiazdą o małej masie, emitowałby własną poświatę w podczerwieni. Oznacza to, że Spitzer zarejestrowałby jaśniejszy tranzyt, niż gdyby obiekt był planetą, która raczej blokuje, niż emituje światło. Kiedy naukowcy porównali dane ze Spitzera z tranzytem w świetle widzialnym wykonanym za pomocą Gran Telescopio Canarias na Wyspach Kanaryjskich, nie dostrzegli żadnej zauważalnej różnicy. To, w połączeniu z wiekiem gwiazdy i innymi informacjami o układzie, doprowadziło ich do wniosku, że WD 1856 b jest najprawdopodobniej planetą nie większą niż 14 Jowiszów. Przyszłe badania i obserwacje mogą potwierdzić ten wniosek.

Znalezienie ewentualnego świata blisko białego karła skłoniło współautorkę badania Lisę Kaltenegger, Vanderburga i innych do rozważenia implikacji dla badania atmosfer małych skalistych światów w podobnych sytuacjach. Załóżmy na przykład, że planeta wielkości Ziemi znajdowała się w takim zakresie odległości orbitalnych wokół WD 1856, gdzie na powierzchni mogłaby istnieć woda. Korzystając z symulacji obserwacji, naukowcy pokazują, że przyszły teleskop Jamesa Webba może wykryć wodę i dwutlenek węgla na hipotetycznym świecie, obserwując zaledwie pięć jego tranzytów.

„Jeszcze bardziej imponujące jest to, że Webb mógł wykryć kombinacje gazów potencjalnie wskazujące na aktywność biologiczną na takim świecie na podstawie zaledwie 25 tranzytów. WD 1856 b sugeruje, że planety mogą przetrwać chaotyczne historie białych karłów. W odpowiednich warunkach światy te mogłyby utrzymać warunki sprzyjające życiu dłużej, niż przewiduje to skala czasu dla Ziemi. Teraz możemy odkryć wiele nowych intrygujących możliwości dla światów krążących wokół tych martwych jąder gwiazd” – mówi Kaltenegger, dyrektor Instytutu Carla Sagana w Cornell.

Obecnie nie ma dowodów sugerujących, że w układzie istnieją inne światy, ale możliwe jest, że istnieją dodatkowe planety i nie zostały jeszcze wykryte. Mogą mieć orbity przekraczające czas, w jakim TESS obserwuje sektor, lub są nachylone względem obserwatora w taki sposób, że tranzyty nie występują. Także biały karzeł jest tak mały, że prawdopodobieństwo uchwycenia tranzytów planet znajdujących się dalej w układzie jest bardzo niskie.

Opracowanie:
Agnieszka Nowak

Źródło:

21 września 2020

W jaki sposób mgławice planetarne uzyskują swoje kształty

Po szeroko zakrojonych obserwacjach wiatrów gwiazdowych wokół chłodnych, ewoluujących gwiazd, naukowcy odkryli, w jaki sposób mgławice planetarne uzyskują swoje hipnotyzujące kształty. Odkrycia opublikowane w Science są sprzeczne z powszechnym konsensusem i pokazują, że wiatry gwiazdowe są nie tylko asferyczne, ale również wykazują podobieństwa do mgławic planetarnych.


Międzynarodowy zespół astronomów skupił się w swoich obserwacjach na wiatrach gwiazdowych – przepływach cząsteczek – wokół chłodnych czerwonych olbrzymów, zwanych także gwiazdami na asymptotycznej gałęzi olbrzymów diagramu H-R (gwiazdy AGB). „Gwiazdy AGB są chłodnymi wyewoluowanymi gwiazdami, które znajdują się na ostatnim etapie ewolucji tuż przed przekształceniem się w mgławicę planetarną. Poprzez swoje wiatry gwiazdy AGB dostarczają około 85% gazu i 35% pyłu ze źródeł gwiazdowych do Galaktycznego Ośrodka Międzygwiazdowego i są dominującymi dostawcami pierwotnych budulców materii międzygwiazdowej, z których ostatecznie powstają planety” – powiedział Carl Gottlieb, astronom z Harvard & Smithsonian i współautor artykułu.

Pomimo dużego zainteresowania astronomów, przed badaniem brakowało dużego, szczegółowego zbioru danych obserwacyjnych dotyczących wiatrów gwiazdowych otaczających gwiazdy ABG, co doprowadziło do długotrwałego naukowego nieporozumienia: że wiatry gwiazdowe mają całkowicie sferyczny kształt, tak jak gwiazdy, które otaczają. Nowe dane obserwacyjne kształtują zupełnie inną historię poszczególnych gwiazd, ich życia i śmierci. Astronomowie mają teraz bezprecedensowe spojrzenie na sposób, w jaki gwiazdy takie jak nasze Słońce będą ewoluować podczas ostatnich etapów swojego życia.

Obserwacje ukazały wiele różnych kształtów, dodatkowo łącząc powstawanie wiatru gwiazdowego z mgławicami planetarnymi. Niektóre z nich są podobne do mgławic planetarnych, niektóre do dysków, podczas gdy inne mają kształt oczu, struktur spiralnych, a nawet łuków.

Astronomowie szybko zdali sobie sprawę, że kształty te nie powstały przypadkowo, a towarzysze – małomasywne gwiazdy i ciężkie planety – w pobliżu gwiazd AGB wpływały na te kształty i wzory. Podobnie jak łyżka, którą miesza się kawę z odrobiną mleka może tworzyć spiralny wzór, tak gwiezdny towarzysz zasysa materię w swoim kierunku krążąc wokół gwiazdy i kształtuje wiatr gwiazdowy. Wszystkie te obserwacje można wytłumaczyć faktem, że gwiazdy te mają towarzysza.

Ponadto badanie dostarcza solidnych podstaw do zrozumienia gwiazd podobnych do Słońca i przyszłości samego Słońca. Za około 5 mld lat Słońce stanie się jaśniejsze, jego promień rozszerzy się do orbity Ziemi i wejdzie w fazę AGB. Zarówno Jowisz jak i Saturn – ze względu dużą masę własną – będą miały wpływ na to, czy Słońce spędzi swoje ostatnie tysiąclecia w sercu spirali, motyla czy innego zachwycającego kształtu, jaki widzimy dzisiaj w mgławicach planetarnych. Obecne symulacje przewidują, że Jowisz i Saturn utworzą w wietrze słonecznym słabą strukturę spiralną.

Opracowanie:
Agnieszka Nowak

Źródło:

20 września 2020

Pierwszy bezpośredni pomiar odległości do magnetara

Astronomowie korzystający z VLBA dokonali pierwszego bezpośredniego geometrycznego pomiaru odległości do magnetara znajdującego się w naszej galaktyce – pomiaru, który może w przyszłości pomóc w ustaleniu, czy magnetary są źródłem tajemniczych szybkich rozbłysków radiowych (Fast Radio Bursts – FRB).


Magnetary to rozmaite gwiazdy neutronowe – bardzo gęste pozostałości masywnych gwiazd, które eksplodowały jako supernowe – z niezwykle silnymi polami magnetycznymi. Typowe magnetarowe pole magnetyczne jest bilion razy silniejsze niż pole magnetyczne Ziemi, co sprawia, że magnetary są najbardziej magnetycznymi obiektami we Wszechświecie. Mogą emitować silne wybuchy promieniowania rentgenowskiego i gamma, a ostatnio stały się wiodącym kandydatem na źródło FRB.

Odkryty w 2003 roku magnetar o nazwie XTE J1810-197 był pierwszym z zaledwie sześciu znanych takich obiektów emitujących impulsy radiowe. Obserwowana emisja radiowa trwała od 2003 do 2008 roku, po czym ustała na dziesięć lat. W grudniu 2018 roku wznowił wysyłanie jasnych impulsów radiowych.

Zespół astronomów wykorzystał VLBA do regularnych obserwacji XTE J1810-197 od stycznia do listopada 2019 roku, a następnie ponownie w marcu i kwietniu 2020 r. Oglądając magnetara z przeciwnych stron orbity Ziemi wokół Słońca, byli w stanie wykryć niewielkie przesunięcie jego widocznej pozycji w stosunku do znacznie bardziej odległych obiektów tła. Efekt ten, zwany paralaksą, umożliwia astronomom wykorzystanie geometrii do bezpośredniego obliczenia odległości obiektu.

„Jest to pierwszy pomiar paralaksy dla magnetara i pokazuje, że jest to jeden z najbliższych znanych magnetarów – około 8100 lat świetlnych od nas – co czyni go głównym celem przyszłych badań” – powiedział Hao Ding, doktorant z Uniwersytetu Swinburne of Technology w Australii.

28 kwietnia zarejestrowano krótki błysk radiowy wyemitowany przez inny magnetar, zwany SGR 1935+2154. Błysk ten był najsilniejszym, jaki kiedykolwiek zarejestrowano w Drodze Mlecznej. Choć nie tak silny jak FRB pochodzące z innych galaktyk, ten wybuch sugerował astronomom, że magnetary mogą generować FRB.

Szybkie rozbłyski radiowe po raz pierwszy odkryto w 2007 roku. Są bardzo energetyczne i trwają najwyżej kilka milisekund. Większość przybyła spoza Drogi Mlecznej. Ich pochodzenie pozostaje nieznane, ale ich właściwości wskazują, że może je wygenerować ekstremalne środowisko magnetara.

„Posiadanie dokładnej odległości do tego magnetara oznacza, że możemy dokładnie obliczyć siłę impulsów radiowych pochodzących z niego. Jeżeli emituje coś podobnego do FRB, będziemy wiedzieć, jak silny jest ten puls. FRB różnią się pod względem siły, więc chcielibyśmy wiedzieć, czy impuls magnetara zbliża się, czy pokrywa z siłą znanych FRB” – mówi Adam Deller, również z Uniwersytetu Swinburne.

„Kluczem do odpowiedzi na to pytanie będzie znalezienie więcej odległych magnetarów, abyśmy mogli rozszerzyć naszą próbkę i uzyskać więcej danych. VLBA jest idealnym narzędziem do tego celu” – powiedział Walter Brisken z NRAO.

Ponadto astronomowie wiedzą, że pulsary, takie jak ten w Mgławicy Krab, emitują „olbrzymie impulsy”, znacznie silniejsze niż zwykłe. Określenie odległości do magnetarów pomoże im zrozumieć to zjawisko i dowiedzieć się, czy może FRB są najbardziej ekstremalnym przykładem olbrzymich impulsów.

Ostatecznym ultimatum jest określenie dokładnego mechanizmu, który wytwarza FRB – dodają naukowcy.

Opracowanie:
Agnieszka Nowak

Źródło:

19 września 2020

Różne spojrzenia na szybkie rozbłyski radiowe

Szybkie rozbłyski radiowe (FRB) są kłopotliwym zjawiskiem astrofizycznym. Jak sugeruje ich nazwa, są zasadniczo krótkimi sygnałami radiowymi, ale posiadają zaskakującą ilość energii. Bardziej niezwykłe jest to, że niektóre FRB powtarzają się, podczas gdy inne są zdarzeniami jednorazowymi.


Powtarzające się szybkie rozbłyski radiowe dają możliwość dokładniejszego ich zbadania. Więc co widzimy, gdy obserwujemy wybuchy na wielu częstotliwościach jednocześnie?

FRB trwają zwykle tylko kilka milisekund, ale intensywność, z jaką są wykrywane sugeruje, że są wytwarzane przez procesy o bardzo dużej energii. Czym są te procesy pozostaje kwestią otwartą. Praktycznie wszystkie znane FRB pochodzą spoza Drogi Mlecznej.

Wiadomo, że niektóre FRB się powtarzają, co pozwala na określenie ich pochodzenia znacznie dokładniej niż jednorazowych FRB. Pierwszy znany powtarzający się rozbłysk, zwany FRB 121102, znajduje się w galaktyce karłowatej oddalonej o ponad 2 mld lat świetlnych stąd. FRB 121102 wytworzył setki rozbłysków od czasu jego odkrycia, a badania wykazały, że można go wykryć na wielu częstotliwościach radiowych.

W ramach nowych badań prowadzonych przez Walida Majida (JPL/CalTech) zrewidowano FRB 121102 przy użyciu DSS-43, 70-metrowego radioteleskopu w Deep Space Network. Celem badania było zbadanie rozbłysków FRB 121102 na wyższych częstotliwościach niż wcześniej oraz zbadanie ich wyglądu w obserwacjach szerokopasmowych.

Szerokopasmowe obserwacje FRB 121102 dostarczają widm rozbłysków, co jest niezwykle przydatne. W przypadku FRB cechy widmowe mogą być albo wywołane mechanizmem samego wybuchu, albo zamiast tego mogły zostać dodane jako sygnał propagowany przez środowisko gospodarza, przez przestrzeń międzygalaktyczną a następnie przez Drogę Mleczną, aby dotrzeć do nas.

Majid i jego współpracownicy obserwowali FRB 121102 z DSS-43 przez prawie sześć godzin 19 września 2019 roku. Obserwacje skupiały się na 2,25 (pasmo S) i 8,36 GHz (pasmo X) z użytkowymi szerokościami pasma ~100 i ~430 MHz. W tym czasie zaobserwowano sześć błysków – ale były one widoczne tylko w paśmie S o niższej częstotliwości!

Brak wykrywania wysokiej częstotliwości dla FRB 121102 jest interesujący, zwłaszcza że pasmo X miało większą szerokość niż pasmo S. Czy ta zależność częstotliwości zapewnia spojrzenie w mechanizm emisji FRB? Czy może pojawia się tylko wtedy, gdy sygnał dociera do nas?

Majid i jego współpracownicy zbadali możliwość, że scyntylacja w naszej galaktyce może być odpowiedzialna za brak widocznej aktywności w paśmie X. W kontekście FRB scyntylacja galaktyczna to obserwacja wielokrotnych błysków o różnych częstotliwościach, wywołanych przez fotony z wybuchu, oddziałujące z materią w Drodze Mlecznej. Autorzy pokazują, że scyntylacja galaktyczna nie może wyjaśnić obserwacji FRB 121102, co sugeruje, że zależność częstotliwości może mieć więcej wspólnego z wewnętrznymi właściwościami mechanizmu emisji lub właściwościami galaktyki macierzystej FRB.

Podobnie jak w przypadku większości rzeczy w astronomii, potrzeba więcej obserwacji. Naukowcy doszli do wniosku, że gęste, wieloczęstotliwościowe obserwacje FRB 121102 mogą znacznie pomóc w zrozumieniu jego zachowania. I tak tajemnica FRB trwa!

Opracowanie:
Agnieszka Nowak

Źródło:

18 września 2020

Gwiezdny fosfor pomoże znaleźć egzoplanety potencjalnie nadające się do zamieszkania?

Badaczka z Southwest Research Institute zidentyfikowała gwiezdny fosfor jako prawdopodobny marker zawężający poszukiwanie życia w kosmosie. Opracowała techniki identyfikacji gwiazd, które mogą mieć egzoplanety, bazując na składzie chemicznym gwiazd, o których wiadomo, że mają planety, i proponuje, aby przyszłe badania skupiały się na gwiezdnym fosforze, by znaleźć układy o największym jakie znamy prawdopodobieństwie istnienia życia.


„Szukając egzoplanet i próbując sprawdzić, czy są zdatne do zamieszkania, ważne jest, aby planeta żyła aktywnymi cyklami, wulkanami i tektoniką płyt. Współautorka mojej pracy, dr Hilairy Hartnett, jest oceanografem i wskazała, że fosfor jest niezbędny dla wszelkiego życia na Ziemi. Jest niezbędny do tworzenia DNA, błon komórkowych, kości i zębów ludzi i zwierząt a nawet morskiego mikrobiomu planktonu” – mówi dr Natalie Hinkel z SwRI, astrofizyk planetarny i główna autorka nowego artykułu opublikowanego w Astrophysical Research Letters.

Określenie proporcji pierwiastków w ekosystemach egzoplanetarnych nie jest jeszcze możliwe, ale ogólnie przyjmuje się, że planety mają skład podobny do swoich gwiazd macierzystych. Naukowcy mogą spektroskopowo mierzyć obfitość pierwiastków w gwieździe, badając, jak światło oddziałuje z pierwiastkami w górnych warstwach jej atmosfery. Korzystając z tych danych, naukowcy mogą wnioskować, z czego zbudowane są planety krążące wokół gwiazdy, używając składu chemicznego gwiazd jako wskaźnika zastępczego dla ich planet.

Na Ziemi kluczowymi pierwiastkami w biologii są węgiel, wodór, azot, tlen, fosfor i siarka (czyli CHNOPS). W dzisiejszych oceanach fosfor jest uważany za najbardziej ograniczający składnik pokarmowy dla życia, ponieważ jest najmniej dostępną substancją chemiczną niezbędną do reakcji biochemicznych.

Hinkel wykorzystała katalogi Hypatia, publicznie dostępną bazę danych gwiazd, które opracowała, aby ocenić i porównać wskaźniki obfitości węgla, azotu, krzemu i fosforu w pobliskich gwiazdach z tymi zawartymi w przeciętnym morskim planktonie, skorupie ziemskiej, a także w krzemianach luzem na Ziemi i Marsie.

„Ale jest tak mało danych dotyczących obfitości fosforowej w gwiazdach, istnieją tylko dla około 1% gwiazd. To sprawia, że naprawdę trudno jest określić jakiekolwiek wyraźne trendy między gwiazdami, nie mówiąc już o roli fosforu w ewolucji egzoplanet” – mówi Hinkel.

Nie jest tak, że gwiazdom brakuje fosforu, ale pomiar tego pierwiastka jest trudny, ponieważ jest wykrywany w obszarze widma światła, którego zwykle się nie obserwuje: na krawędzi optycznej długości fali światła i promieniowania podczerwonego. Większość badań spektroskopowych nie jest dostrojona do znajdowania pierwiastków w tak wąskim zakresie.

„Nasze Słońce ma stosunkowo wysoki poziom fosforu, a biologia Ziemi wymaga niewielkiej, ale zauważalnej jego ilości. Tak więc prawdopodobne jest, że na planetach skalistych, które krążą wokół swoich gwiazd macierzystych z mniejszą ilością fosforu będzie on niedostępny dla potencjalnego życia. Dlatego też wzywamy społeczność badającą obfitość gwiazd do uczynienia obserwacji fosforu priorytetem w przyszłych badaniach” – dodaje Hinkel.

Idąc dalej, odkrycia te mogą zrewolucjonizować wybór gwiazd docelowych do przyszłych badań i ustalić rolę, jaką pierwiastki odgrywają w wykrywaniu egzoplanet a także ich formowaniu się i przystosowaniu do zamieszkania.

Opracowanie:
Agnieszka Nowak

Źródło:

16 września 2020

Wietrzny dzień w Drodze Mlecznej

Turbulencje, czyli chaotyczne zmiany ciśnienia i prędkości pyłu, to jedna z największych tajemnic fizyki klasycznej. Wiadomo, że duża część gazu w galaktykach jest burzliwa, ale mechanizmy, które rozwinęły i utrzymują tę turbulencję, nadal są poznawane. Chociaż nadal nie znamy wszystkich fizycznych szczegółów stojących za turbulencjami, dużo czasu i wysiłku poświęcono na zidentyfikowanie statystyk, które mogą nam powiedzieć, czy gaz jest burzliwy czy nie. Innymi słowy, wiemy, jak wyglądają turbulencje, nawet jeżeli nie znamy wszystkich szczegółów ich działania. W nowej pracy naukowcy badają, w jaki sposób wiatry gwiazdowe z gromad gwiazd mogą wywoływać takie turbulencje.


Wiatry gwiazdowe, szczególnie te pochodzące od masywnych gwiazd np. typu O lub B, wydmuchują bąble w otaczający go zimny gaz, wypychając go na zewnątrz i pozostawiając pustkę. Są one podobne do bąbli, które obserwujemy na Ziemi, stworzone przez powietrze wepchnięte do innego ośrodka. W przypadku pęcherzy wiatru gwiazdowego „powietrze” jest materią gorącego wiatru gwiazdowego. Gdy w gromadzie gwiazd znajdują się masywne gwiazdy, ich bąble mają tendencję do nakładania się na siebie i tworzenia „superbąbla”. Jednym z niesamowitych jego przykładów jest Gromada Mgławicy w Orionie. Autorzy artykułu przeprowadzają symulacje, które z grubsza naśladują gwiezdny profil Gromady Mgławicy w Orionie i oni także odkrywają, że powstał duży superbąbel.

W tych symulacjach najmasywniejsze gwiazdy z dużą prędkością wyrzucają gorący gaz, który wypełnia superbąbel, i wypychają go na zewnątrz do chłodniejszego gazu. Ta ekspansja tworzy grubą powłokę o średniej temperaturze. Ponieważ powłoka ta jest gęstsza niż centralny gorący gaz, jest w stanie ochłodzić się szybciej i pozostać znacznie chłodniejsza niż wnętrze superbąbla. W miarę jak symulacja postępuje, w gorącym gazie wewnątrz powłoki pojawiają się turbulentne niestabilności.

Ciekawym wynikiem tych symulacji jest różnorodność prędkości, z jakimi porusza się gaz. Okazuje się, że powłoka bąbla porusza się z prędkością większą niż jeden Mach jako szok naddźwiękowy, który wciska się w otaczającą materię. Jednak gaz wewnętrzny jest praktycznie całkowicie poddźwiękowy i podlega silnym fluktuacjom prędkości w całym bąblu. Innymi słowy, chociaż wiatry wywołują naddźwiękowy szok, powodują poddźwiękowe turbulencje wewnątrz bąbla.

Aby upewnić się, że gorący gaz wewnątrz bąbla jest rzeczywiście burzliwy, autorzy wybrali statystykę znaną jako widmo mocy, która pozwala im zobaczyć, jak energia przechodzi od dużych do małych skal w symulacjach. Typowe oczekiwane widmo mocy dla turbulencji poddźwiękowych to prawo mocy o nachyleniu -5/3 (znane jako turbulencja Kołmogorowa). Autorzy odkryli, że w miarę upływu czasu ich symulacja z grubsza zbliża się do tego, co wskazuje, że w rzeczywistości wiatry gwiazdowe powodują głównie turbulencje poddźwiękowe.

Jest to ekscytujący wynik, który wskazuje, że gromady gwiazd mogą odgrywać znaczącą rolę w napędzaniu i utrzymywaniu turbulencji w galaktykach. Modelowanie turbulencji ma kluczowe znaczenie dla zrozumienia wielu procesów w ewolucji galaktyk, takich jak np. powstawanie gwiazd. Dzięki takim symulacjom astronomowie mogą lepiej zrozumieć, dlaczego gaz w galaktykach zachowuje się tak, jak się zachowuje i jak może tworzyć nowe gwiazdy, układy słoneczne, a nawet nas samych.

Opracowanie:
Agnieszka Nowak

Źródło:

15 września 2020

Nowe dane Hubble'a sugerują, że w aktualnych teoriach ciemnej materii brakuje składnika

Obserwacje wykonane przez Kosmiczny Teleskop Hubble’a i Bardzo Duży Teleskop (VLT) wykazały, że w teorii zachowania ciemnej materii może czegoś brakować. Ów brakujący składnik może wyjaśniać, dlaczego naukowcy odkryli nieoczekiwaną rozbieżność pomiędzy obserwacjami stężeń ciemnej materii w próbce masywnych gromad galaktyk a teoretycznymi symulacjami komputerowymi dotyczącymi rozkładu ciemnej materii w gromadach. Nowe odkrycia wskazują, że niektóre niewielkie skupiska ciemnej materii powodują efekt soczewkowania grawitacyjnego, który jest 10 razy silniejszy niż oczekiwano.



Ciemna materia to niewidzialny klej, który utrzymuje razem gwiazdy, pył i gaz w galaktyce. Ta tajemnicza substancja stanowi podstawę wielkoskalowej struktury Wszechświata. Ponieważ ciemna materia nie emituje, nie pochłania i nie odbija światła, jej obecność jest znana jedynie dzięki przyciąganiu grawitacyjnemu widzialnej materii w przestrzeni. Astrofizycy i fizycy wciąż próbują ustalić, co to jest.

Gromady galaktyk, najmasywniejsze i niedawno zgrupowane struktury we Wszechświecie, są również największymi magazynami ciemnej materii. Gromady składają się z pojedynczych galaktyk, które są utrzymywane razem w dużej mierze przez grawitację ciemnej materii.

„Gromady galaktyk są idealnymi laboratoriami, w których można badać, czy dostępne obecnie symulacje numeryczne Wszechświata dobrze odtwarzają to, co możemy wywnioskować na podstawie soczewkowania grawitacyjnego. Przetestowaliśmy wiele danych w tym badaniu i jesteśmy pewni, że to niedopasowanie wskazuje, że brakuje jakiegoś składnika fizycznego albo w symulacjach, albo w naszym rozumieniu natury ciemnej materii” – powiedział Massimo Meneghetti z NAF-Observatory of Astrophysics and Space Science w Bolonii we Włoszech, główny autor badania.

Rozkład ciemnej materii w gromadach jest odwzorowany przez pomiar załamania światła – efekt soczewkowania grawitacyjnego – które wytwarzają. Grawitacja ciemnej materii skupiona w gromadach powiększa i zakrzywia światło z odległych obiektów tła, które pojawiają się na obrazach gromad. Soczewkowanie grawitacyjne często może również dawać wiele obrazów tej samej odległej galaktyki.

Im większe stężenie ciemnej materii w gromadzie, tym bardziej dramatyczny jest efekt zakrzywiania światła. Obecność mniejszych skupisk ciemnej materii związanych z poszczególnymi gromadami galaktyk zwiększa poziom zakrzywienia. W pewnym sensie gromada galaktyk działa jak wielka soczewka, w której osadzonych jest wiele mniejszych soczewek.

Najnowsze zdjęcia z Hubble’a zostały wykonane przez Wide Field Camera 3 i Advanced Camera for Surveys. W połączeniu z widmami z VLT, zespół stworzył dokładną mapę ciemnej materii. Mierząc zakrzywienia soczewkowania, astronomowie mogli prześledzić ilość i rozkład ciemnej materii. Trzy kluczowe gromady galaktyk, MACS J1206.2-0847, MACS J0416.1-2403 i Abell S1063, były częścią dwóch badań Hubble’a: The Frontier Fields oraz the Cluster Lensing And Supernova Survey with Hubble (CLASH).

Ku zaskoczeniu zespołu, oprócz dramatycznych łuków i wydłużonych właściwości odległych galaktyk wytworzonych przez soczewkowanie grawitacyjne każdej gromady, obrazy Hubble’a ukazały również nieoczekiwaną liczbę mniejszych łuków i zakrzywionych obrazów zagnieżdżonych w pobliżu jądra każdej gromady, gdzie rezydują galaktyki. Naukowcy są przekonani, że zagnieżdżone soczewki wytwarzane są przez grawitację gęstych skupisk materii wewnątrz poszczególnych galaktyk gromady. Dalsze obserwacje spektroskopowe mierzyły prędkość gwiazd krążących wewnątrz kilku gromad galaktyk, w celu ustalenia ich masy.

Łącząc obserwacje z Hubble’a ze spektroskopią z VLT, astronomowie byli w stanie zidentyfikować dziesiątki wielokrotnie obrazowanych, soczewkowanych galaktyk tła. Pozwoliło im to stworzyć dobrze skalibrowaną wysokiej rozdzielczości mapę rozkładu ciemnej materii w każdej gromadzie.

Zespół porównał mapy ciemnej materii z próbkami symulowanych gromad galaktyk o podobnych masach, znajdujących się w przybliżeniu w tych samych odległościach. Gromady w modelu komputerowym nie wykazały takiego samego poziomu koncentracji ciemnej materii w najmniejszych skalach – skalach powiązanych z poszczególnymi gromadami galaktyk.

Astronomowie z niecierpliwością czekają na dalsze badania ciemnej materii i jej tajemnic, aby w końcu określić jej naturę.

Opracowanie:
Agnieszka Nowak

Źródło:

12 września 2020

Zespół badawczy odkrywa unikalną eksplozję supernowej

Sto milionów lat świetlnych od Ziemi wybuchła niezwykła supernowa.

Ta eksplodująca gwiazda, znana jako „supernowa LSQ14fmg” – była odległym obiektem odkrytym przez 37-osobowy międzynarodowy zespół naukowców. Ich badania, opublikowane w The Astrophysical Journal, pomogły odkryć pochodzenie grupy supernowych, do których należy ta gwiazda.


Charakterystyka tej supernowej – jaśnieje bardzo wolno, a także jest jedną z najjaśniejszych eksplozji w swojej klasie – nie przypomina żadnej innej.

Ta wybuchająca gwiazda to tak zwana supernowa typu Ia, a dokładniej członek grupy „super-Chandrasekhar”.

Gwiazdy przechodzą swojego rodzaju cykl życia, a te supernowe są eksplodującym finałem niektórych gwiazd o małej masie. Są tak potężne, że kształtują ewolucję galaktyk i tak potężne, że możemy je obserwować z Ziemi, nawet gdy znajdują się w połowie obserwowalnego Wszechświata.

Supernowe typu Ia były kluczowymi narzędziami do odkrywania tak zwanej ciemnej energii. Pomimo ich ważności, astronomowie niewiele wiedzieli o pochodzeniu wybuchów tych supernowych, poza tym, że są to eksplozje termojądrowe białych karłów.

Jednak zespół badawczy wiedział, że światło supernowej typu Ia wznosi się i opada w ciągu tygodni, zasilane radioaktywnym rozpadem niklu powstałym podczas eksplozji. Supernowa tego typu rozjaśnia się, gdy nikiel staje się bardziej odsłonięty, a następnie słabnie, gdy supernowa ostygnie, a nikiel rozpadnie się na kobalt i żelazo.

Po zebraniu danych z teleskopów w Chile i Hiszpanii, zespół badawczy zauważył, że supernowa uderzyła w otaczającą ją materię, co spowodowało uwolnienie większej ilości światła wraz ze światłem rozpadającego się niklu. Zobaczyli również dowody na produkcję tlenku węgla. Obserwacje te doprowadziły ich do pewnej konkluzji – supernowa eksplodowała wewnątrz czegoś, co wcześniej było gwiazdą na asymptotycznej gałęzi olbrzymów diagramu H-R (gwiazda typu AGB) w drodze do przekształcenia się w protomgławicę planetarną.

Naukowcy wysunęli teorię, że eksplozja była wywołana przez połączenie się jądra gwiazdy AGB i innego białego karła krążącego w jego zasięgu. Gwiazda centralna traciła znaczną ilość masy w postaci wiatru gwiazdowego, zanim ten proces utraty masy nagle się zatrzymał i utworzyła pierścień materii otaczający gwiazdę. Wkrótce po wybuchu supernowej, uderzyła w pierścień materii, co często możemy oglądać na zdjęciach pod postacią mgławicy planetarnej, i wytworzyła dodatkowe światło oraz zaobserwowane powolne pojaśnienie.

„Jest to pierwszy silny dowód obserwacyjny na to, że supernowa typu Ia może eksplodować w układzie mgławicy protoplanetarnej, i jest ważnym krokiem w zrozumieniu pochodzenia supernowych typu Ia. Te supernowe mogą być szczególnie kłopotliwe, ponieważ mogą mieszać się z próbką normalnych supernowych wykorzystywanych do badania ciemnej energii. Te badania pozwalają nam lepiej zrozumieć pochodzenie supernowych typu Ia i pomogą udoskonalić przyszłe badania nad ciemną energią” – powiedział Eric Hsiao, asystent profesora fizyki na Uniwersytecie Stanowym Florydy, który przewodził zespołowi badaczy.

Opracowanie:
Agnieszka Nowak

Źródło:

11 września 2020

Wykrywanie zderzających się supermasywnych czarnych dziur: poszukiwania trwają

W ramach nowego badania opracowano innowacyjną metodę wykrywania zderzających się supermasywnych czarnych dziur. Badanie zostało opublikowane w Astrophysical Journal i było prowadzone przez dr. Xingjiang Zhu z OzGrav.


W centrum każdej galaktyki znajduje się supermasywna czarna dziura – czyli taka, która ma masę od milionów do miliardów razy większą od Słońca. Duże galaktyki składają się z mniejszych galaktyk, które się ze sobą łączą, więc oczekuje się, że zderzenia supermasywnych czarnych dziur będą powszechne. Jednak proces ten pozostaje nieuchwytny: jak dotąd nie znaleziono żadnych rozstrzygających dowodów na jego istnienie.

Jednym ze sposobów poszukiwania takich połączeń jest wykrywanie emitowanych przez nie fal grawitacyjnych – zmarszczek czasoprzestrzeni. Odległa, łącząca się para supermasywnych czarnych dziur krążących wokół siebie, emituje fale grawitacyjne. Ponieważ czarne dziury są tak duże, każdej fali dotarcie do Ziemi zajmuje wiele lat.

Astronomowie szukali oznak zderzania się supermasywnych czarnych dziur także w świetle widzialnym. Zostało zidentyfikowanych mnóstwo potencjalnych źródeł poprzez poszukiwanie regularnych fluktuacji jasności odległych galaktyk, zwanych kwazarami. Kwazary są niezwykle jasne i uważa się, że są napędzane przez gromadzenie się obłoków gazu na supermasywnych czarnych dziurach.

Jeżeli w centrum kwazara znajdują się dwie czarne dziury krążące wokół siebie (zamiast pojedynczej czarnej dziury), ruch orbitalny może zmienić akumulację obłoku gazu i prowadzić do okresowych zmian w jego jasności. Podczas takich poszukiwań zidentyfikowano setki kandydatów, ale astronomowie nie znaleźli jeszcze sygnału.

„Jeżeli uda nam się znaleźć parę łączących się supermasywnych czarnych dziur, to nie tylko powie nam o tym, jak ewoluowały galaktyki, ale ujawni także spodziewaną siłę sygnału fal grawitacyjnych dla obserwatorów pulsarów” – powiedział Zhu.

Naukowcy opracowali nową metodę, która pozwoli wyszukiwać okresowe sygnały i jednocześnie mierzyć właściwości szumów kwazara. Dlatego powinna dawać wiarygodne oszacowanie statystycznej ważności wykrytego sygnału.

Stosując tę metodę do jednego z najważniejszych kandydatów na źródło, nazwanego PG1302-102, naukowcy znaleźli mocne dowody na okresową zmienność; argumentowali jednak, że sygnał będzie prawdopodobnie bardziej skomplikowany niż przewidują obecne modele.

„Powszechnie przyjęty model szumu kwazara jest błędny. Dane ujawniają dodatkowe cechy w przypadkowych fluktuacjach gromadzenia się gazu na supermasywnych czarnych dziurach” – dodaje Zhu.

„Nasze wyniki pokazują, że kwazary są skomplikowane. Będziemy musieli ulepszyć nasze modele, jeżeli zamierzamy ich używać do identyfikacji układów podwójnych supermasywnych czarnych dziur” – mówi współpracownik i główny badacz OzGrav Eric Thrane.

Opracowanie:
Agnieszka Nowak

Źródło:

10 września 2020

Masywne halo ostatecznie wyjaśnia strumień gazu wirujący wokół Drogi Mlecznej

Droga Mleczna w swoim sąsiedztwie nie jest samotna. Przechwyciła na swoją orbitę mniejsze galaktyki, a dwie największe z nich znane są jako Mały i Wielki Obłok Magellana, widoczne jako bliźniacze pyłowe smugi na południowej półkuli.


Gdy Obłoki Magellana zaczęły okrążać Drogę Mleczną miliardy lat temu, został z nich wyrwany ogromny strumień gazu znany jako Strumień Magellana. Rozciąga się on teraz na ponad połowę nocnego nieba. Jednak astronomowie nie potrafili wyjaśnić, dlaczego strumień stał się tak masywny, osiągając masę ponad miliard razy większą od Słońca.

Teraz zespół astronomów odkrył, że halo ciepłego gazu otaczające Obłoki Magellana prawdopodobnie działa jak ochronny kokon osłaniający galaktyki karłowate przed halo Drogi Mlecznej i ma udział w większości masy Strumienia Magellana. Gdy mniejsze galaktyki weszły w sferę wpływów Drogi Mlecznej, części tego halo zostały rozciągnięte i rozproszone, tworząc Strumień Magellana. Naukowcy opublikowali swoje odkrycia 9 września w czasopiśmie Nature.

Jak wyjaśniają naukowcy, istniejące modele powstawania Strumienia są przestarzałe, ponieważ nie potrafią wyjaśnić jego masy i dlatego opracowali nowe rozwiązanie, które doskonale wyjaśnia tę zagadkę. 

Starsze modele sugerowały, że pływy grawitacyjne i siła galaktyk napierających na siebie, utworzyły Strumień Magellana z Obłoków Magellana, gdy galaktyki karłowate weszły na orbitę wokół Drogi Mlecznej. Chociaż modele te mogły w dużej mierze wyjaśnić rozmiar i kształt strumienia, stanowiło to zaledwie 1/10 jego masy.

Niedawno astronomowie odkryli, że Obłoki Magellana są na tyle masywne, że otacza je ich własne halo ciepłego gazu. Elena D’Onghia, profesor astronomii na University of Wisconsin–Madison, która nadzorowała badania, i jej zespół zdali sobie sprawę, że to halo radykalnie zmienia sposób formowania się strumienia.

W nowych symulacjach przeprowadzonych przez Scotta Lucchiniego, absolwenta Wydziału Fizyki na UW-Madison i pierwszego autora artykułu, tworzenie się Strumienia Magellana podzielone jest na dwa okresy. Podczas gdy Obłoki Magellana wciąż były daleko od Drogi Mlecznej, Wielki Obłok Magellana przez miliardy lat odbierał gaz swojemu mniejszemu partnerowi. Ten skradziony gaz stanowi ostatecznie 10-20% końcowej masy strumienia.

Później, gdy obłoki opadły na orbitę wokół Drogi Mlecznej, halo oddało ⅕ swojej masy, aby utworzyć Strumień Magellana, który został rozciągnięty na olbrzymim łuku nieba w wyniku interakcji z grawitacją Drogi Mlecznej i jej własnym halo.

Nowy model jest pierwszym, który wyjaśnia pełną masę Strumienia Magellana a zdecydowana większość pochodzi ze zjonizowanego gazu, który jest bardziej energetyczny niż gaz niezjonizowany. Lepiej wyjaśnia również, w jaki sposób strumień przyjął swój nitkowaty kształt i dlaczego brakuje mu gwiazd – ponieważ został utworzony głównie z halo nie posiadającego gwiazd, a nie z samych galaktyk karłowatych.

Propozycję naukowców można teraz bezpośrednio przetestować. Teleskop Hubble’a powinien być w stanie dostrzec charakterystyczne sygnatury halo gazu otaczającego Obłoki Magellana.

W latach ‘90 ubiegłego stulecia grupa astronomów z UW-Madison odkryła pierwsze wskazówki, że Obłoki Magellana mogą mieć rozległe halo. Teraz dzięki lepszemu zrozumieniu wpływu halo na Strumień Magellana i jasnemu testowi na jego istnienie, jest szansa na wyjaśnienie wieloletniej tajemnicy pochodzenia strumienia, oferując pełniejszy obraz naszego galaktycznego sąsiedztwa.

Opracowanie:
Agnieszka Nowak

Źródło:

8 września 2020

Nowe spojrzenie na życie masywnych gwiazd

Masywne gwiazdy to takie, które są większe niż ok. 10 mas Słońca i powstają znacznie rzadziej niż ich odpowiedniki o małej masie. Jednak w największym stopniu przyczyniają się one do ewolucji gromad gwiazd i galaktyk. Masywne gwiazdy są prekursorami wielu barwnych i energetycznych zjawisk we Wszechświecie, od wzbogacania swojego otoczenia eksplozjami supernowych po zmianę dynamiki ich układów.


Najlepszym narzędziem do badania masywnych gwiazd są „szczegółowe kody ewolucji gwiazd”: programy komputerowe, które mogą obliczać zarówno strukturę wewnętrzną, jak i ewolucję tych gwiazd. Niestety, są one obliczeniowo kosztowne i czasochłonne – obliczenie ewolucji pojedynczej gwiazdy może zająć kilka godzin. Z tego powodu stosowanie tych kodów do modelowania gwiazd w złożonych układach, takich jak gromady kuliste, które mogą zawierać miliony oddziałujących gwiazd, jest niepraktyczne.

Aby rozwiązać ten problem, zespół naukowców opracował kod ewolucji gwiazd, nazwany METISSE (METhod of Interpolation for Single Star Evolution – Metoda interpolacji dla ewolucji pojedynczej gwiazdy). Interpolacja to metoda szacowania ilości w oparciu o pobliskie wartości, takie jak szacowana wielkość gwiazdy na podstawie rozmiarów gwiazd o podobnych masach. METISSE wykorzystuje interpolację do szybkiego obliczania właściwości gwiazdy w dowolnym momencie przy użyciu wybranych modeli gwiazd obliczonych za pomocą szczegółowych kodów ewolucji gwiazd.

METISSE może dokonać obliczeń ewolucji 10 000 gwiazd w 3 minuty. Co najważniejsze, może wykorzystywać różne zestawy modeli gwiazd do przewidywania ich właściwości, co jest niezwykle ważne w przypadku masywnych gwiazd. Tego typu gwiazdy są rzadkością, a ich złożone i krótkie życie utrudnia dokładne określenie ich właściwości. W konsekwencji szczegółowe kody ewolucji gwiazd często wymagają różnych założeń podczas obliczania ewolucji tych gwiazd. Różnice w założeniach stosowanych przez różne kody ewolucji gwiazd mogą znacząco wpłynąć na ich przewidywania dotyczące życia i właściwości masywnych gwiazd.

Poojan Agrawal – badaczka OzGrav i główna autorka badania – wyjaśnia: „Dokonaliśmy interpolacji gwiazd, które miały od 9 do 100 mas Słońca i porównaliśmy przewidywania dotyczące ostatecznego losu tych gwiazd. W przypadku większości masywnych gwiazd w naszym zbiorze odkryliśmy, że masy pozostałości gwiazdowych (gwiazd neutronowych lub czarnych dziur) mogą różnić się nawet o 20 mas Słońca.”

Kiedy pozostałości gwiazdowe się łączą, tworzą fale grawitacyjne – zmarszczki w czasie i przestrzeni – które naukowcy mogą wykrywać. Dlatego wyniki tego badania będą miały ogromny wpływ na przyszłe prognozy w astronomii fal grawitacyjnych.

Agrawal dodaje: „METISSE to dopiero pierwszy krok w odkryciu roli, jaką masywne gwiazdy odgrywają w układach gwiazdowych, takich jak gromady gwiazd, a wyniki już są bardzo ekscytujące.”

Opracowanie:
Agnieszka Nowak

Źródło:

6 września 2020

Pozostałości po gwiezdnej eksplozji nie spowolniły przez 400 lat

Zarejestrowano materię z dala od miejsca, w którym eksplodowała gwiazda, podróżującą z prędkością większą niż 32 mln km/h – około 25 000 razy szybciej niż wynosi prędkość dźwięku na Ziemi.


Pozostałość po supernowej Keplera (SN 1604) to szczątki zdetonowanej gwiazdy, która znajduje się około 20 000 lat świetlnych od Ziemi w naszej galaktyce. W 1604 roku pierwsi astronomowie, w tym Johannes Kepler, od którego imienia pochodzi nazwa pozostałości, zobaczyli eksplozję supernowej, która zniszczyła gwiazdę.

Teraz wiemy, że pozostałość po supernowej Keplera jest następstwem tak zwanej supernowej typu Ia, w której mała zwarta gwiazda – biały karzeł – przekracza granicę masy krytycznej po interakcji z gwiazdą towarzyszącą i przechodzi eksplozję termojądrową, która rozbija białego karła i wyrzuca jego pozostałości na zewnątrz.

Badanie śledziło prędkości 15 „węzłów” szczątków pozostałości po supernowej Keplera, wszystkie świecące w promieniach X. Zmierzono, że najszybszy węzeł miał prędkość 37 mln km/h, najwyższą prędkość, jaką kiedykolwiek wykryto dla pozostałości po supernowej w promieniach rentgenowskich. Średnia prędkość węzłów wynosi około 16 mln km/h.

Zaskakujące jest to, że te węzły poruszają się z tak dużymi prędkościami po ponad 400 latach od eksplozji. Może to oznaczać, że ich gęstość musi być dość duża a to oznacza, że eksplozja była bardzo niejednorodna.

Naukowcy oszacowali prędkość węzłów analizując widma rentgenowskie – jasność promieni rentgenowskich o różnych długościach fal – uzyskane w 2016 roku za pomocą Chandra High Energy Transmission Grating. Porównując długości fal właściwości w widmie rentgenowskim z wartościami laboratoryjnymi i wykorzystując efekt Dopplera, zmierzyli prędkość każdego węzła wzdłuż linii pola widzenia Chandra na pozostałość po supernowej. 

Astronomowie wykorzystali również obrazy z Chandra uzyskane w latach 2000, 2004, 2006 i 2014 do wykrycia zmian położenia węzłów w czasie. Użyli tych zmian położenia do pomiarów prędkości węzłów prostopadle do naszego pola widzenia. Połączono te dwa pomiary w celu oszacowania rzeczywistej prędkości każdego węzła w przestrzeni trójwymiarowej.

Wysokie prędkości z pozostałości są podobne do tych, które naukowcy widzieli w obserwacjach optycznych wybuchów supernowych w innych galaktykach zaledwie w kilka dni lub tygodni po eksplozji, na długo przed powstaniem pozostałości po supernowej dziesiątki lat później. To porównanie sugeruje, że niektóre węzły w tej pozostałości zostały niewiele spowolnione w ciągu 400 lat od wybuchu przez zderzenie z materią otaczającą pozostałość.

Bazując na obserwacjach widma z użyciem Chandra okazuje się, że osiem z piętnastu węzłów zdecydowanie oddala się od Ziemi, i potwierdzono, że tylko dwa poruszają się w naszym kierunku. Pozostałe pięć nie pokazuje wyraźnego kierunku ruchu wzdłuż linii pola widzenia. Ta asymetria ruchu węzłów oznacza, że pozostałości mogą nie być symetryczne wzdłuż naszej linii wzroku, ale należy zbadać więcej węzłów, aby potwierdzić ten wynik.

Cztery z węzłów poruszają się w podobnym kierunku i zawierają podobną ilość cięższych pierwiastków, takich jak krzem. Naukowcy sugerują, że materia w tych węzłach prawdopodobnie pochodzi z samej powłoki eksplodującego białego karła.

Jeden z innych najszybciej poruszających się węzłów znajduje się w „uchu” po prawej stronie pozostałości, co potwierdza intrygującą ideę, że trójwymiarowy kształt szczątków przypomina bardziej piłkę nożną niż jednolitą kulę – stwierdzili naukowcy.

Wyjaśnienie dużej szybkości materii jest niejasne. Niektórzy naukowcy zasugerowali, że pozostałość po supernowej Keplera pochodzi z niezwykle silnej supernowej typu Ia, co może wyjaśniać bardzo szybko poruszającą się materię. Możliwe jest również, że najbliższe otoczenie wokół pozostałości samo w sobie jest zbrylone, co może pozwalać niektórym szczątkom na tunelowanie przez regiony o niskiej gęstości i uniknięcie znacznego spowolnienia.

Opracowanie:
Agnieszka Nowak

Źródło:

4 września 2020

Gdzie powstają gwiazdy? Teleskop Spitzera bada regiony gwiazdotwórcze

Większość masywnych gwiazd we Wszechświecie rodzi się wewnątrz kosmicznych obłoków gazu i pyłu, gdzie zostawiają wskazówki dotyczące swojego życia, które astronomowie później mogą rozszyfrować.


Mgławica znana jako W51 jest jednym z najbardziej aktywnych obszarów gwiazdotwórczych w Drodze Mlecznej. Po raz pierwszy zidentyfikowana w 1958 roku przez radioteleskopy, tworzy bogaty kosmiczny gobelin na zdjęciu uzyskanym z wycofanego już z obserwacji Kosmicznego Teleskopu Spitzera.

Znajdująca się w odległości 17 000 lat świetlnych od Ziemi w kierunku konstelacji Orła, W51 ma około 350 lat świetlnych średnicy. Jest prawie niewidoczna przez teleskopy optyczne, ponieważ jej światło jest blokowane przez międzygwiazdowe obłoki pyłowe, które znajdują się pomiędzy W51 a Ziemią. Jednak dłuższy zakres widma elektromagnetycznego, taki jak fale radiowe i podczerwone, mogą przedrzeć się przez pył bez przeszkód. Oglądana w podczerwieni przez Spitzera W51 stanowi spektakularny widok: jej całkowita emisja w podczerwieni odpowiada 20 mln Słońc.

Gdybyś mógł zobaczyć nieuzbrojonym okiem, ten gęsty obłok gazu i pyłu wydawałby się mniej więcej tak duży, jak Księżyc w pełni. Mgławica Oriona – kolejny dobrze znany obszar gwiazdotwórczy i ulubiony cel amatorskich obserwacji astronomicznych – zajmuje mniej więcej taką samą powierzchnię na niebie. Ale W52 w rzeczywistości znajduje się znacznie dalej od Ziemi niż Orion i przez to jest znacznie większa i około 75 razy jaśniejsza. Podczas gdy Orion posiada 4 gwiazdy typu O – najmasywniejsze gwiazdy we Wszechświecie – W51 ma ich ponad 30.

„Fabryki gwiazd”, takie jak ta, mogą działać przez miliony lat. Olbrzymi czerwony region z prawej strony W51 jest starszy, co widać już po tym, jak został wyrzeźbiony przez wiatry z pokoleń masywnych gwiazd (takich, które mają co najmniej 10 mas Słońca). Pył i gaz są jeszcze bardziej zmiatane, gdy te gwiazdy umierają i eksplodują w postaci supernowych. W młodszej części mgławicy, z lewej strony, wiele gwiazd właśnie zaczyna usuwać gaz i pył w taki sam sposób, jak zrobiły to gwiazdy w starszym regionie. Widać, że wiele z tych młodych gwiazd jest w procesie formowania bąbli pustej przestrzeni wokół siebie.

To zdjęcie zostało wykonane przez Spitzera w 2004 roku jako część kampanii obserwacyjnej mającej na celu zmapowanie wielkoskalowej struktury Drogi Mlecznej – spore wyzwanie, ponieważ Ziemia znajduje się w jej wnętrzu. Przegląd nazwany GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire) dostarczył również cennych danych na temat wielu cudów wewnątrz Drogi Mlecznej, w tym obrazy wielu gwiezdnych fabryk, takich jak W51, które były ukryte za pyłem przed teleskopami optycznymi.

Zdjęcia dostarczone przez Spitzera za pośrednictwem przeglądu GLIMPSE – w połączeniu z danymi z wielu innych, uzupełniających się teleskopów – dają naukowcom wgląd w to, w jaki sposób masywne gwiazdy tworzą się w naszej Drodze Mlecznej, a następnie jak ich potężne wiatry i promieniowanie oddziałują z pozostałą otaczającą materią. Nie możemy obserwować regionów gwiazdotwórczych w innych galaktykach z taką samą szczegółowością, z jaką mamy możliwość w przypadku naszej galaktyki. Zatem regiony takie, jak W51 są naprawdę ważne dla pogłębienia naszej wiedzy dotyczącej formowania się gwiazd w Drodze Mlecznej, co następnie możemy ekstrapolować na to, jak taki proces przebiega w innych galaktykach.

Opracowanie:
Agnieszka Nowak

Źródło:

Gwiazda z dyskiem pyłowym zasilanym przez otaczającą materię

Międzynarodowy zespół astronomów publikuje obraz młodej gwiazdy z otaczającym ją dyskiem pyłowym, który wciąż jest zasilany z otoczenia. Zja...