31 grudnia 2018

Dlaczego młode układy planetarne są tak bogate w gaz?

Nowe badania przeprowadzone przez międzynarodowy zespół naukowców mogą rzucić światło na tajemnicę formowania się planet: dlaczego młode układy planetarne są tak bogate w gaz?


Aby zrozumieć, dlaczego jest to tak ważne pytanie, cofnijmy się nieco w czasie. Tworzenie się planet jest jednym z najważniejszych procesów, które astronomowie powinni zrozumieć. Jednym z największych pytań ludzkości jest to, czy jesteśmy sami we Wszechświecie. Astrofizycy odkryli już blisko 4000 egzoplanet, a my jesteśmy bliżej, niż kiedykolwiek, aby znaleźć odpowiedź na tę zagadkę. Odpowiedź prawdopodobnie nie będzie pochodzić od bezpośredniego wykrycia życia pozaziemskiego, ale raczej z dobrego zrozumienia pobliskich układów planetarnych. Na przykład obecnie możemy badać układy planetarne na tyle szczegółowo, żeby stwierdzić, czy ich powierzchnie są gościnne dla życia. Jesteśmy również w stanie szukać molekuł, które zostałyby wytworzone przez żywe organizmy, i sprawdzić, czy planeta nie jest bombardowana szkodliwym promieniowaniem. Żyjemy zatem w wyjątkowym momencie historii, gdzie mamy możliwość odpowiadania na egzystencjalne pytania dotyczące obecności życia na innych planetach.  

Ponieważ planety są trudne do wykrycia (w końcu są znacznie słabsze i mniejsze od gwiazd), astronomowie często badają układy planetarne na etapie tworzenia się, patrząc na gaz i pył zmieszany z młodymi planetami. Badanie zawartości gazu w bardziej dojrzałych układach planetarnych stało się możliwe dopiero w ciągu ostatnich kilku lat, dzięki najnowszej generacji obserwatoriom na falach milimetrowych (takich, jak np. ALMA). Początkowo astronomowie byli zaskoczeni odkryciem gazu w dojrzałych układach planetarnych. Powszechnie uważano, że gazowy dysk mógłby istnieć tylko na najwcześniejszych etapach życia systemu planetarnego (tzw. faza dysku protoplanetarnego, która trwa zaledwie kilka milionów lat), i dawno nie powinno być go w starszych układach. Ale obserwacje były jasne: starsze układy planetarne, w wieku od 10 do 100 mln lat, również posiadają dyski gazowe. Modele formowania się planet nie przewidywały tego, a astronomowie pracowali ciężko, od kiedy próbowali zrozumieć, skąd ten gaz pochodzi.

Istnieją dwa możliwe rozwiązania. Albo owe dyski gazowe są pozostałością po pierwotnym dysku protoplanetarnym, albo są tworzone osobno w późniejszym czasie (może powstał podczas odparowywania skalistych ciał układu). Model „drugorzędnego pochodzenia” zgadza się z pewnymi obserwacjami – odpowiada ilości gazu, jaką widzimy na przykład w układach, w których wykrywane są małe ilości gazu – ale do tej pory pojawiał się duży problem z tym pomysłem.

Aby zrozumieć problem, musimy przyjrzeć się składowi chemicznemu tego gazu. Gaz w młodych układach planetarnych to głównie wodór, ale zawiera również inne molekuły, takie jak tlenek węgla. CO jest niezwykle ważne: wodór jest prawie niewidoczny dla teleskopów astronomicznych, więc cząsteczki tlenku węgla są tym, na co faktycznie patrzą astronomowie, kiedy mierzą dyski gazowe. Problem polega na tym, że CO jest bardzo delikatną molekułą. Jest łatwo rozpraszany przez wysokoenergetyczne ultrafioletowe fotony z kosmosu. Aby tlenek węgla przetrwał, musi być chroniony (zazwyczaj przez warstwę cząsteczek wodoru). Uważa się, że każdy pierwotny tlenek węgla mógłby istnieć wraz z ochronną otoczką wodorową, umożliwiającą mu przetrwanie, podczas gdy CO, pojawiający się później (pochodzenie wtórne) byłby niechroniony i nie trwałby zbyt długo.

To jest więc problem. Astronomowie obserwują dojrzałe układy planetarne z masywnymi dyskami gazowymi. Ilość gazu i jego rozkład sugerują, że dyski nie są pozostałością po najwcześniejszym układzie, ale powstały później. Jednak każdy tlenek węgla, który pojawił się później, powinien zostać zniszczony przez fotony UV z kosmosu.

To nowe badanie dostarcza nowatorskiego rozwiązania, które wyjaśnia ten paradoks. Okazuje się, że tlenek węgla może sam sobie zaszkodzić! CO, wyparowując z planetozymali bogatych w lotne substancje, zostaje zniszczony przez fotony UV (zgodnie z oczekiwaniami). Ale fragmenty pozostałe po molekule są niszczone – atomy węgla i tlenu – budują i tworzą własną tarczę ochronną. Gdy pierwotny CO zostanie zniszczony, a „tarcza” się rozwinie, dyski CO są chronione i mogą wzrastać.

Autorzy badania przetestowali nowe modele w układzie wokół gwiazdy HD 131835. CO już był obserwowany w tym układzie. Aby przetestować teorię, użyli ALMA do uzyskania nowych obserwacji atomów węgla, które powinny chronić CO. I teoria działa! Po pierwsze, masa atomów węgla w układzie jest rzeczywiście wystarczająco wysoka, aby działać jako osłona dla CO. Po drugie, ilość tlenku węgla jest zgodna z modelem „źródła wtórnego” dla tarczy gazowej. Chociaż jest to jedyny masywny układ z obserwowanymi atomami węgla, autorzy przyglądają się także innym masywnym dyskom gazowym i pokazują, że obserwowane masy CO są zgodne z ich modelami.

Opracowanie:
Agnieszka Nowak

Źródło:

30 grudnia 2018

Nowe teorie odpowiadające na podstawowe pytania dotyczące czarnych dziur

Gdy gwiazdy się zapadają, mogą tworzyć czarne dziury, które są wszędzie, w całym Wszechświecie, dlatego ważne jest, aby je badać. Czarne dziury to tajemnicze obiekty z zewnętrzną krawędzią zwaną horyzontem zdarzeń, która więzi wszystko, łącznie ze światłem. Ogólna teoria względności Einsteina przewiduje, że gdy obiekt wpadnie pod horyzont zdarzeń, kończy w środku czarnej dziury, zwanym osobliwością, gdzie jest całkowicie zmiażdżony. W punkcie osobliwości przyciąganie grawitacyjne jest nieskończone i wszystkie znane prawa fizyki się załamują, łącznie z teorią Einsteina. Fizycy teoretyczni poprzez skomplikowane równania matematyczne zastanawiali się, czy osobliwość rzeczywiście istnieje, jak dotąd jednak z niewielkim powodzeniem. Prof. Parampreet Singh z Louisiana State University oraz jego współpracownicy opracowali nowe równania matematyczne, które wykraczają poza teorię względności Einsteina, pokonując jej kluczowe ograniczenia – centralną osobliwość czarnej dziury.


Fizycy teoretyczni opracowali w latach ‘90 ubiegłego stulecia teorię zwaną pętlową grawitacją kwantową, która łączy grawitację z mechaniką kwantową, co wyjaśnia dynamikę przestrzeni i czasu. Nowe równania opisują czarne dziury w pętli grawitacji kwantowej, i pokazują, że osobliwość czarnej dziury nie istnieje.

Teoria Einsteina zawodzi nie tylko w centrum czarnych dziur, ale także w wyjaśnieniu, w jaki sposób Wszechświat został stworzony z osobliwości w Wielkim Wybuchu. Dlatego dekadę temu Ashtekar, Singh i ich współpracownicy zaczęli rozszerzać fizykę poza Wielki Wybuch i tworzyć nowe prognozy za pomocą pętlowej grawitacji kwantowej. Posługując się równaniami matematycznymi i technikami obliczeniowymi pętlowej grawitacji kwantowej, pokazali, że Wielki Wybuch został zastąpiony przez „Wielkie Bęc” (ang. Big Bounce). Ale problem przezwyciężenia osobliwości czarnych dziur jest wyjątkowo złożony.

Opracowanie:
Agnieszka Nowak

Źródło:

28 grudnia 2018

Czarne dziury o masach pośrednich odkryte w jądrach galaktycznych

Istnienie czarnych dziur jest dobrze ugruntowane, a obserwacje wykazały, że zarówno obiekty o masach gwiazdowych jak i te gigantyczne, o masach miliony do miliardów razy większych od Słońca znajdują się w centrach galaktyk. Jednak pochodzenie tych masywnych czarnych dziur jest tajemnicą. Małe czarne dziury są prochami supernowych ale masywne prawdopodobnie zaczynają od małych rozmiarów, rosnąc w miarę upływu czasu. Taki wzrost jest jednak bardzo ograniczony, ponieważ zmienny akt akrecji generuje promieniowanie, które hamuje dalszy napływ. Uważa się, że potrzebne są miliardy lat, aby powstała czarna dziura o masie miliarda słońc. Problem pojawia się, ponieważ astronomowie wykryli teraz kwazary z supermasywnymi czarnymi dziurami we wczesnym Wszechświecie – ale od czasu Wielkiego Wybuchu nie minęło wystarczająco dużo czasu, aby mogły one osiągnąć te supermasywne rozmiary. Czarne dziury o masach gwiazdowych powinny ponadto wytworzyć w miarę wzrostu wiele czarnych dziur o masach pośrednich (IMBH), ale tylko nieliczne są kandydatkami na nie, a ich identyfikacja jako IMBH pozostaje kontrowersyjna. Jako rozwiązanie problemu zaproponowano alternatywną sugestię. Bezpośrednie zapadanie się dużego obłoku gazowego we wczesnym Wszechświecie stworzy czarną dziurę o masie pośredniej z masą od setek do tysięcy mas Słońca, pozostawiając wiele czasu, aby wszystkie z nich mogły teraz rozwinąć się w supermasywne obiekty.



Astronom z CfA, Igor Chilingarian, przewodził zespołowi, który po raz pierwszy zidentyfikował zbiór galaktyk z aktywnymi jądrami zawierającymi czarne dziury o masach pośrednich. Wykorzystali przegląd galaktyk w świetle optycznym oraz bliskiej podczerwieni do zidentyfikowania potencjalnych źródeł, wybierając 350 potencjalnych kandydatek na IMBH. Następnie uzyskali pomiary rentgenowskie z misji Chandra i XMM Newton, które potwierdziły, że dziesięć z tych jąder było IMBH i że aktywnie akreowały. Najmniej aktywna IMBH, jaką odkryli w swoim zestawieniu 10 obiektów, miała 36 000 mas Słońca; największa miała około dziesięć razy więcej. Odkrycie to jest niezwykłe nie tylko dlatego, że jest pierwszym miarodajnym wykryciem tych nieuchwytnych obiektów, ale dlatego, że nadaje doktrynę idei, że czarne dziury o masach gwiazdowych zasiewały wczesny Wszechświat, a wiele z nich rozrosło się w supermasywne potwory, które widzimy dzisiaj.

Opracowanie:
Agnieszka Nowak

Źródło:

27 grudnia 2018

Rozbłyski młodych gwiazd mogą tworzyć cegiełki planet


Ogromny rozbłysk na młodej gwieździe został zaobserwowany przez astronomów z University of Warwick, rzucając światło na pochodzenie potencjalnie nadających się do zamieszkania egzoplanet.


Wielka eksplozja energii i plazmy, jedna z największych kiedykolwiek widzianych na tego typu gwieździe, jest około 10 000 raz większa, niż największy rozbłysk słoneczny zarejestrowany na naszej dziennej gwieździe.

Odkrycie zostało szczegółowo opisane w artykule i ujawnia, w jaki sposób ta ogromna „furia” mogła nawet zaburzyć materię krążącą wokół gwiazdy, która tworzyłaby cegiełki dla przyszłych planet.

Rozbłysk był obserwowany na młodej gwieździe typu M, nazwanej NGTS J121939.5-355557, oddalonej od nas o 685 lat świetlnych. Jej wiek jest oceniany na 2 mln lat, co astronomowie często określają jako gwiazdę przed ciągiem głównym, która jeszcze nie osiągnęła rozmiaru, w jakim spędzi większość cyklu swojego życia.

Zdarzenie zostało zaobserwowane w ramach dużego przeglądu rozbłysków tysięcy gwiazd przez doktoranta University of Warwick Jamesa Jackmana, jako część projektu poszukiwania zjawisk wybuchowych na gwiazdach poza naszym Układem Słonecznym. Użył sieci teleskopów Next-Generation Transit Survey (NGTS) w Chile, które zostały zaprojektowane, by znajdować egzoplanety, zbierając pomiary jasności setek tysięcy gwiazd. Jego uwagę zwróciła NGTS J121939.5-355557, ponieważ miała jeden z największych rozbłysków widocznych w tym typie gwiazd.

Rozbłysk gwiazdowy pojawia się, gdy pole magnetyczne gwiazdy zmienia się, uwalniając ogromne ilości energii w tym procesie. Przyspiesza to naładowane cząstki, plazmę, w obrębie gwiazdy, które uderzają w jej powierzchnię, podgrzewając się do około 10 000 stopni. Energia ta wytwarza promieniowania optyczne i podczerwone, ale także rentgenowskie i gamma, które mogą być odbierane przez teleskopy na Ziemi i na jej orbicie.

Pola magnetyczne gwiazd typu M są o wiele silniejsze, niż na Słońcu i astronomowie obliczyli, że ten rozmiar rozbłysku jest rzadkim zdarzeniem, występującym w dowolnym miejscu, raz na trzy do pięciu lat. Zwykle jest to gwiazda, która wykazuje niewielką aktywność i utrzymuje stałą jasność. W tę konkretną noc obserwacyjną astronomowie zauważyli, że na kilka godzin pojaśniała ona nagle siedmiokrotnie, co jest dość ekstremalne. Po tym pojaśnieniu wróciła do normy.

Jest to gwiezdne niemowlę w wieku ok. 2 mln lat. Będzie żyła przez 10 mld lat. Mimo, że jest o wiele chłodniejsza od Słońca (2 000 stopni) i jest mniej więcej tej samej wielkości ale dość duża jak na gwiazdę typu M. Dzieje się tak dlatego, ponieważ wciąż formuje się z gazu w dysku oraz kurczy się i chłodzi, dopóki nie osiągnie ciągu głównego, zachowując pewien promień i jasność przez miliardy lat. 

Odkrycie tego rodzaju szczegółów było możliwe tylko dzięki misji Gaia.

Uważa się, że promieniowanie X z tych dużych rozbłysków wpływa na tworzenie się miękkich błyszczących ziaren bogatych w wapń i glin w dyskach protoplanetarnych gwiazd. Gromadzą się one w asteroidy, które ostatecznie łączą się w krążące planety. Badanie to pogłębia naszą wiedzę na temat tego, jak rozbłyski zaburzają dysk protoplanetarny, poruszając się wokół materii działającej na formowanie się planet i wpływającej na ostateczną strukturę układu planetarnego.

Opracowanie:
Agnieszka Nowak

Źródło:

26 grudnia 2018

Szafiry i diamenty na niebie

Naukowcy z uniwersytetów w Zurychu i Cambridge odkryli nową, egzotyczną klasę planet poza Układem Słonecznym. Te super-Ziemie powstały w wysokich temperaturach blisko gwiazdy macierzystej i zawierają duże ilości wapnia, aluminium i ich tlenków – w tym szafiru i rubinu.


Dwadzieścia jeden lat świetlnych stąd, w gwiazdozbiorze Kasjopei, planeta o nazwie HD219134 b okrąży swoją gwiazdę raz na trzy dni (rok trwa na niej 3 dni). Mając masę prawie pięciu ziem, jest nazywana super-Ziemią. Jednak w przeciwieństwie do naszej planety, najprawdopodobniej nie ma ona masywnego żelaznego jądra, ale zamiast tego jest bogata w wapń i aluminium. HD219134 b jest jedną z trzech kandydatek, które prawdopodobnie należeć będą do nowej, egzotycznej klasy planet pozasłonecznych.

Naukowcy wykorzystują modele teoretyczne do badania formowania się planet i porównywania swoich wyników z danymi obserwacyjnymi. Wiadomo, że podczas formowania się, gwiazdy takie jak Słońce, były otoczone dyskiem gazu i pyłu, w którym rodziły się planety. Skaliste planety, takie jak Ziemia, powstały ze stałych ciał pozostałych po rozproszeniu protoplanetarnego dysku gazowego. Te bloki budowlane są skondensowane z mgławicy gazowej jako chłodzony dysk.

Ale są też rejony blisko gwiazdy, gdzie jest o wiele cieplej. Wiele pierwiastków wciąż znajduje się w gazowym stadium, a bloki planetarne mają zupełnie inny skład. W swoich modelach zespół badawczy obliczył, jak wyglądałaby planeta powstająca w tak gorącym regionie. Odkryli, że wapń i aluminium są głównymi składnikami obok magnezu i krzemu oraz że prawie brak w nich żelaza. Z tego powodu planety takie nie mogą posiadać pola magnetycznego, takiego jak Ziemia. A ponieważ struktura wewnętrzna jest tak różna, ich system chłodzenia i atmosfera będą się różnić od normalnych super-Ziemi. Zespół zatem mówi o nowej, egzotycznej klasie super-Ziem powstałej z kondensatów o wysokiej temperaturze.

Z obliczeń wynika, że planety mają od 10 do 20% mniejsze gęstości, niż Ziemia. Naukowcy przeanalizowali także inne egzoplanety o podobnie niskiej gęstości. Sprawdzili różne scenariusze, aby wyjaśnić zaobserwowane gęstości. Na przykład gruba atmosfera może prowadzić do obniżenia ogólnej gęstości. Ale dwie z badanych egzoplanet, 55 Cancri e i WASP-47 e, okrążają swoją gwiazdę tak blisko, że ich temperatura powierzchniowa wynosi prawie 3 000 stopni i dawno straciłyby tę gazową powłokę. Na HD219134 b jest mniej gorąco i sytuacja jest bardziej skomplikowana. Na pierwszy rzut oka niższą gęstość można wytłumaczyć głębokimi oceanami. Ale druga planeta krążąca wokół gwiazdy nieco dalej sprawia, że ten scenariusz jest mało prawdopodobny. Porównanie dwóch obiektów wykazało, że wewnętrzna planeta nie może zawierać więcej wody lub gazu niż zewnętrzna. Nadal nie jest jasne, czy oceany magmy mogą przyczynić się do niższej gęstości.

W ten sposób naukowcy znaleźli trzy kandydatki, które należą do nowej klasy super-Ziem z tą egzotyczną kompozycją. Korygują również wcześniejszy obraz super-Ziemi, 55 Cancri e, która w 2012 r. trafiła na nagłówki gazet jako „diament na niebie”. Wcześniej badacze zakładali, że planeta składa się głównie z węgla, ale na podstawie kolejnych obserwacji musieli odrzucić tę teorię.

Opracowanie:
Agnieszka Nowak

Źródło:

25 grudnia 2018

Ziarna olbrzymich galaktyk powstałe we wczesnym Wszechświecie

Międzynarodowy zespół badaczy wykazał, że największe galaktyki we Wszechświecie mogły rozpocząć swoje istnienie jako skrajnie gęste obiekty wczesnego Wszechświata, które następnie rozszerzały się w czasie.


Współczesne galaktyki pokazują dużą różnorodność, jak galaktyki karłowate, nieregularne, spiralne oraz masywne galaktyki eliptyczne. Ten ostatni typ, masywne galaktyki eliptyczne, dostarcza astronomom zagadek. Chociaż są to najbardziej masywne galaktyki z największą liczbą gwiazd, prawie wszystkie ich gwiazdy są stare. W pewnym momencie w przeszłości przodkowie masywnych galaktyk eliptycznych musieli szybko uformować wiele gwiazd, a następnie z jakiegoś powodu proces gwiazdotwórczy zatrzymał się. 

Na szczęście skończona prędkość światła daje naukowcom możliwość cofnięcia czasu i zobaczenia wczesnego Wszechświata. Jeżeli galaktyka znajduje się 12 mld lat świetlnych stąd, to światło od niej musiało przebyć 12 mln lat, zanim dotarło do Ziemi. Oznacza to, że światło, które obserwujemy dzisiaj, musiało opuścić galaktykę 12 mld lat temu. Obserwując galaktyki w różnych odległościach od Ziemi, astronomowie mogą zrekonstruować historię Wszechświata.

Międzynarodowy zespół naukowców wykorzystał dane z teleskopu Subaru oraz innych teleskopów do wyszukiwania galaktyk leżących 12 mld lat świetlnych stąd. Pośród tej próbki zidentyfikowali masywne, spokojne galaktyki, czyli masywne galaktyki, w których nie formują się nowe gwiazdy, jako prawdopodobnych przodków współczesnych olbrzymich galaktyk eliptycznych. Zaskakujące jest to, że dorosłe olbrzymie galaktyki istniały już bardzo wcześnie, kiedy Wszechświat miał zaledwie około 13% obecnego wieku.

Następnie zespół wykorzystał teleskop Subaru do wykonania obserwacji w wysokiej rozdzielczości w bliskiej podczerwieni dla 5 najjaśniejszych masywnych spokojnych galaktyk leżących 12 mld lat świetlnych stąd.

Wyniki pokazują, że chociaż masywne, spokojne galaktyki są zwarte (tylko ok. 2% wielkości Drogi Mlecznej), są prawie tak ciężkie, jak współczesne galaktyki. Oznacza to, że aby stać się współczesnymi galaktykami eliptycznymi, musiały się rozdmuchać ponad 100-krotnie, zwiększając masę jedynie o 5 razy. Porównując obserwacje do modeli zabawek, zespół wykazał, że byłoby to możliwe, gdyby wzrost był napędzany, nie przez duże fuzje, w których dwie podobne galaktyki łączą się w większe ale przez mniejsze fuzje, gdy duża galaktyka pochłania mniejszą.

Opracowanie:
Agnieszka Nowak

Źródło:

24 grudnia 2018

Gwiezdne zwłoki dostarczają wskazówek dotyczących brakującego gwiezdnego pyłu

Zgodnie z nowymi obserwacjami tajemniczego obiektu znajdującego się w odległości 15 000 lat świetlnych od Ziemi, pochodzenie pyłu gwiezdnego, który składa się na większość materii w naszym Układzie Słonecznym, włączając nas, jest bardziej skomplikowane, niż wcześniej sądzono.


Wszystko wokół ciebie – twoje biurko, twój laptop, twoja filiżanka kawy – w gruncie rzeczy nawet ty – zbudowane jest z gwiezdnego pyłu, materii wykutej w ognistych piecach gwiazd, które umarły przed narodzeniem naszego Słońca. Badając przestrzeń otaczającą tajemnicze gwiezdne zwłoki naukowcy z Uniwersytetu Arizony dokonali odkrycia, które może pomóc w rozwiązaniu odwiecznej tajemnicy: skąd bierze się gwiezdny pył?

Kiedy gwiazdy umierają, rozsiewają w kosmos wokół siebie pierwiastki, które łączą się w nowe gwiazdy, planety, asteroidy i komety. Większość wszystkiego, co składa się na Ziemię, nawet samo życie, zbudowane jest z pierwiastków wytworzonych przez poprzednie gwiazdy, w tym z krzemu, węgla, azotu i tlenu. Ale to nie jest cała historia. Meteoryty zwykle zawierają ślady gwiezdnego pyłu, który do tej pory uważany był, jako powstający tylko w wyjątkowo gwałtownych, wybuchowych zdarzeniach śmierci gwiazd znanych jako nowe lub supernowe – zbyt rzadkie, by wyjaśnić obfitość zachowaną w meteorytach.

Naukowcy z UA wykorzystali radioteleskopy w Arizonie i Hiszpanii, aby obserwować obłoki gazu w młodej mgławicy planetarnej K4-47, enigmatycznym obiekcie znajdującym się 15 000 lat świetlnych od Ziemi. Sklasyfikowana jako mgławica, K4-47 jest gwiezdną pozostałością, o której astronomowie sądzą, że powstała, gdy gwiazda zrzuciła część swojej materii do powłoki wypływającego gazu, zanim zakończyła swoje życie jako biały karzeł.

Ku swojemu zaskoczeniu, naukowcy odkryli, że niektóre z pierwiastków składających się na mgławicę – węgiel, azot i tlen – są bardzo bogate w pewne odmiany, które pasują do obfitości obserwowanej w niektórych cząstkach meteorytu, ale poza tym są rzadkością w Układzie Słonecznym: nazwane ciężkimi izotopami węgla, azotu i tlenu lub odpowiednio 13C, 15N, 17O. Izotopy te różnią się od swoich bardziej powszechnych form poprzez umieszczenie w ich jądrze dodatkowego neutronu.

Łączenie się dodatkowego neutronu z jądrem atomowym wymaga ekstremalnych temperatur przekraczających 100 mln stopni Celsjusza, co prowadzi naukowców do wniosku, że izotopy te mogą powstawać jedynie w gwałtownych wybuchach energii w starzejących się układach podwójnych gwiazd – i supernowych, w których gwiazda wybucha w kataklizmicznej eksplozji.

Zamiast zdarzeń eksplozji kataklizmicznych, z których wykuwają się ciężkie izotopy, zespół sugeruje, że mogą być wyprodukowane, gdy gwiazda średniej wielkości, taka jak nasze Słońce, stanie się niestabilna pod koniec swojego życia i zostanie poddana tak zwanemu błyskowi helowemu, w którym super gorący hel z rdzenia gwiazdy przebije się przez otaczającą go powłokę wodorową. 

Odkrycie stało się możliwe dzięki współpracy między dyscyplinami, które zwykle pozostają względnie odrębne: astronomii i kosmochemii. Zespół wykorzystał radioteleskopy Arizona Radio Observatory oraz Institut de Radioastronomie Millimetrique (IRAM) do obserwacji widm rotacyjnych emitowanych przez cząsteczki w mgławicy K4-47, które ujawniają wskazówki na temat rozkładu ich masy oraz ich tożsamości.

Naukowcy oczekują z niecierpliwością odkryć, które stoją przed misją OSIRIS-REx wysłaną do asteroidy, prowadzonej przez Uniwersytet Arizona. Zaledwie dwa tygodnie temu statek kosmiczny dotarł do swojej docelowej asteroidy, Bennu, z której będzie zbierać próbki nieskazitelnej materii w 2020 roku. Jednym z głównych celów misji jest zrozumienie ewolucji Bennu i początków Układu Słonecznego.

Opracowanie:
Agnieszka Nowak

Źródło:

23 grudnia 2018

Słabe światło gwiazd na obrazach Hubble’a pokazuje rozkład ciemnej materii

Astronomowie wykorzystujący dane z kosmicznego teleskopu Hubble’a zastosowali rewolucyjną metodę wykrywania ciemnej materii w gromadach galaktyk. Metoda ta pozwala astronomom „widzieć” rozkład ciemnej materii bardziej precyzyjnie, niż jakakolwiek inna metoda stosowana do tej pory i mogłaby zostać wykorzystana do zbadania ostatecznej natury ciemnej materii. 


Przez ostatnie dziesięciolecia astronomowie próbowali zrozumieć prawdziwą naturę tajemniczej substancji, która składa się na większość materii we Wszechświecie – ciemnej materii – i odwzorować jej rozkład we Wszechświecie. Obecnie dwoje astronomów z Australii i Hiszpanii wykorzystało dane z Frontier Fields na teleskopie Hubble’a, aby dokładnie zbadać rozkład ciemnej materii.

Światło wewnątrz gromady jest produktem ubocznym oddziaływań między galaktykami. W trakcie tych interakcji gwiazdy zostają wyrwane ze swoich galaktyk i swobodnie płyną w gromadzie. Gdy uwolnią się od galaktyk, kończą tam, gdzie znajduje się większość masy gromady, głównie ciemnej materii. 

Zarówno ciemna materia jak i odizolowane gwiazdy, które tworzą światło wewnątrz gromady, działają jak bezkolizyjne składniki. Podążają one za potencjałem grawitacyjnym samej gromady. Badanie wykazało, że światło wewnątrz gromady jest wyrównane z ciemną materią, śledząc jej rozkład dokładniej, niż jakakolwiek inna metoda wykorzystująca dotychczas używane wskaźniki świecenia.

Metoda ta jest również wydajniejsza, niż bardziej złożona metoda soczewkowania grawitacyjnego. Podczas, gdy ta ostatnia wymaga zarówno dokładnej rekonstrukcji soczewki, jak i czasochłonnych kampanii spektroskopowych, metoda przedstawiona przez Mireię Montes wykorzystuje tylko głębokie obrazowanie. Oznacza to, że w tej samej ilości czasu obserwacyjnego za pomocą nowej metody można badać więcej gromad.

Wyniki badań przedstawiają możliwość eksploracji ostatecznej natury ciemnej materii. Jeżeli ciemna materia oddziałuje ze sobą, można to wykryć jako małe odchylenia w rozkładzie ciemnej materii w porównaniu do słabej poświaty gwiazd. Obecnie wszystko, co wiadomo na temat ciemnej materii to to, że wydaje się oddziaływać z grawitacyjnie z regularną materią, ale nie w żaden inny sposób. Stwierdzenie, że będzie ona współoddziaływać, będzie mieć istotne ograniczenia dla jej tożsamości.

Na razie Montes i Trujillo planują przeprowadzić więcej przeglądów pierwotnych sześciu gromad aby sprawdzić, czy ich metoda jest dokładna. Kolejnym ważnym testem ich metody będzie obserwacja i analiza dodatkowych gromad galaktyk przez inne zespoły badawcze, aby uzupełnić zestaw danych i potwierdzić ich wyniki.

Zespół może również oczekiwać zastosowania tych samych technik z wykorzystaniem przyszłych teleskopów kosmicznych, takich jak teleskop Jamesa Webba, które będą posiadały jeszcze bardziej czułe instrumenty zdolne do rozpoznawania słabego światła wewnątrz gromady w odległym Wszechświecie.

Opracowanie:
Agnieszka Nowak

Źródło:

22 grudnia 2018

Młoda gwiazda przyłapana na rozjaśnianiu się

Naukowcy odkryli młodą gwiazdę w środku rzadkiego zrywu wzrostu – dramatycznej fazy ewolucji gwiazd, kiedy materia wirująca wokół niej opada na nią, łącząc się z jej masą. Gwiazda należy do klasy tzw. kapryśnych gwiazd, znanych jako FU Ori, nazwane od pierwotnego członka klasy, FU Orionis (duże litery określają schemat nazewnictwa gwiazd zmiennych, a Orionis oznacza gwiazdozbiór Oriona). Zazwyczaj gwiazdy te mają mniej, niż kilka milionów lat, są ukryte za gęstymi obłokami pyłu i trudne do zaobserwowania. Nowy obiekt to zaledwie 25. jak dotąd odnaleziony członek tej klasy, i jeden z zaledwie kilkunastu uchwyconych w akcie rozbłysku.


Nowo odkryta gwiazda, nazwana Gaia 17bpi, po raz pierwszy została zauważona przez satelitę Gaia, który nieprzerwanie skanuje niebo dokonując dokładnych pomiarów gwiazd w świetle widzialnym. Gdy Gaia dostrzega zmianę jasności gwiazdy, alarm trafia do społeczności astronomicznej. Absolwent Uniwersytetu w Exeter i współautor nowego badania, Sam Morrell, jako pierwszy zauważył, że gwiazda pojaśniała. Inni członkowie zespołu poszli w jego ślady i odkryli, że pojaśnienie gwiazdy zostało niespodziewanie uchwycone w świetle podczerwonym przez satelitę NEOWISE, który szuka planetoid, w tym samym czasie, co Gaia, oraz półtora roku wcześniej.

Teleskop Spitzera, który obserwuje w podczerwieni, również w 2014 roku był świadkiem rozpoczęcia fazy pojaśniania gwiazdy, co dało badaczom olbrzymią ilość danych w podczerwieni.

Nowe obserwacje rzucają światło na niektóre z długotrwałych tajemnic dotyczących ewolucji młodych gwiazd. Jedno z pytań bez odpowiedzi brzmi: w jaki sposób gwiazda nabywa całą swoją masę? Gwiazdy tworzą się z zapadających się kul gazu i pyłu. Z czasem dysk materii formuje się wokół gwiazdy, która nadal pobiera z niego materię. Ale, zgodnie z poprzednimi obserwacjami, gwiazdy nie przyciągają materii do siebie wystarczająco szybko, aby osiągnąć swoją ostateczną masę.

Teoretycy uważają, że zdarzenia FU Ori – w których masa jest zrzucana z dysku na gwiazdę w ciągu całego okresu około 100 lat – mogą pomóc rozwiązać zagadkę. Naukowcy uważają, że wszystkie gwiazdy podlegają w swoim życiu około 10 do 20 wydarzeniom podobnym do tych FU Ori, ale ponieważ ta faza gwiazdowa jest często ukryta za pyłem, dane są ograniczone. 

Nowe badania pokazują w największych szczegółach, jak materia porusza się od środka dysku, w rejonie położonym około 1 jednostki astronomicznej od gwiazdy, do samej gwiazdy. NEOWISE i Spitzer jako pierwsze wykryły oznaki nagromadzenia się materii w środku dysku. Gdy materia zaczyna gromadzić się w dysku, rozgrzewa się, emitując promieniowanie podczerwone. Potem, gdy ta materia opada na gwiazdę, rozgrzewa się jeszcze bardziej, emitując światło widzialne, co wykryła Gaia.

Opracowanie:
Agnieszka Nowak

Źródło:

20 grudnia 2018

Tajemnica korony wokół supermasywnych czarnych dziur się pogłębia

Naukowcy z RIKEN wykorzystali obserwacje z ALMA do pomiaru siły pól magnetycznych w pobliżu dwóch supermasywnych czarnych dziur w centrum ważnej grupy aktywnych galaktyk. Zaskakujące jest to, że siły pól magnetycznych wydają się niewystarczające do zasilania koron, obłoków przegrzanej plazmy, które są obserwowane wokół czarnych dziur w centrach tych galaktyk.


Od dawna wiadomo, że supermasywne czarne dziury, które znajdują się w centrach galaktyk, czasami przewyższające blaskiem swoje macierzyste galaktyki, są otoczone koroną przegrzanej plazmy, tak jak Słońce. W przypadku czarnych dziur korony te mogą być podgrzane do fenomenalnej temperatury sięgającej miliarda stopni Celsjusza. Od dawna zakładano, że, podobnie jak Słońce, korony były ogrzewane energią pola magnetycznego. Jednak, owe pola nigdy nie zostały zmierzone, pozostawiając niepewność dotyczącą ich dokładnego mechanizmu.

W artykule opublikowanym w 2014 r. grupa naukowców przewidziała, że elektrony w plazmie otaczającej czarne dziury emitują specjalny rodzaj światła, znanego jako promieniowanie synchrotronowe, ponieważ istnieją w koronach razem z siłami magnetycznymi. Konkretnie promieniowanie to byłoby w paśmie radiowym, co oznacza światło o bardzo dużej długości fali i niskiej częstotliwości. Grupa postanowiła zmierzyć te pola.

Postanowili przyjrzeć się danym z dwóch „pobliskich” – w skali astronomicznej – aktywnych jąder galaktycznych – IC 4329A, oddalonego o około 200 mln lat świetlnych, oraz NGC 985, oddalonej o około 580 mln lat świetlnych stąd. Rozpoczęto od pomiarów z obserwatorium ALMA w Chile, a następnie porównano je z obserwacjami z dwóch innych radioteleskopów: obserwatorium VLA w USA oraz ATCA w Australii, które badają nieco inne pasma; i rzeczywiście wykryli nadmiar promieniowania radiowego pochodzącego od promieniowania synchrotronowego, oprócz emisji z dżetów od czarnych dziur.

Dzięki obserwacjom, zespół wywnioskował, że korona ma rozmiar około 40 promieni Schwartzchilda i siłę około 10 gaussów, czyli postać, która jest nieco większa, niż pole magnetyczne na powierzchni Ziemi i mniejsza, niż w typowym magnesie na lodówkę.

Zaskoczeniem jest to, że chociaż potwierdzili emisję radiowego promieniowania synchrotronowego z korony w obu obiektach, okazuje się, że pole mierzonego pola magnetycznego jest zbyt słabe, aby być w stanie napędzać intensywne ogrzewanie korony wokół tych czarnych dziur. To samo zjawisko zostało zaobserwowane w obu galaktykach, co sugeruje, że może być ono powszechne.

Patrząc w przyszłość, grupa planuje szukać oznak silnych promieni gamma, które powinny towarzyszyć emisjom radiowym, aby lepiej zrozumieć, co dzieje się w bliskim otoczeniu supermasywnych czarnych dziur.

Opracowanie:
Agnieszka Nowak

Źródło:

16 grudnia 2018

Nowa egzoplaneta rozmiarów Neptuna

Niezwykłe odkrycia egzoplanet dokonane przez misje Kepler i K2 umożliwiły astronomom połączenie historii Ziemi i zrozumienie, dlaczego różni się ona od rozmaitych egzoplanetarnych kuzynów. Dwie wciąż wyróżniające się zagadki dotyczą różnic między tworzeniem się i ewolucją skalistych i nieskalistych małych planet, oraz tego, dlaczego wydaje się, że istnieje bardzo mało planet pozasłonecznych o rozmiarach 2 Ziem (planety z mniejszą średnicą mają skład podobny do skalistych planet ziemskich). Aby oszacować skład egzoplanety, należy zbadać jej gęstość, zmierzyć masę i rozmiar. O ile promień można oszacować na podstawie kształtu krzywej podczas tranzytu planety, gdyż blokuje ona światło gwiazdy, to masę już trudniej jest określić. Aby jednak uzyskać wyłaniający się obraz, potrzebne są precyzyjne i dokładne pomiary masy dla większej liczby planet podobnych do Ziemi.


Misja K2 jest reaktywowaną wersją misji Kepler. Razem odkryły tysiące egzoplanet oraz nieoczekiwaną różnorodność populacji egzoplanet. K2 jest czuła tylko na planety krótkookresowe (znalazła jedynie kilka z okresami obiegu dłuższymi, niż 40 dni). Egzoplaneta K2-263b krąży wokół gwiazdy mniej masywnej niż Słońce (0,86 jego masy) i znajduje się 536 lat świetlnych stąd, co zmierzono przy pomocy satelity Gaia. Egzoplaneta ma promień 2,41 promienia Ziemi (z tolerancją 5%). Astronomowie z CfA użyli spektroskopu HARPS-N zamontowanego na Telescopio Nazionale Galileo w La Palma w Hiszpanii aby zmierzyć okresową prędkość egzoplanety podczas jej orbitowania, a tym samym wyznaczyć jej masę.

Pomiary prędkości uzyskane z HARPS-N były niezwykle precyzyjne. Z danych orbitalnych naukowcy wyznaczyli masę planety na 14,8 mas Ziemi co znaczy, że jej gęstość wynosi 5,6 grama na cm sześcienny (dla porównania gęstość skalistej Ziemi to 5,51 g/cm sześcienny). Naukowcy wywnioskowali, że K2-263b najprawdopodobniej zawiera równoważne ilości lodów w porównaniu ze skałami, mniej więcej zgodną z aktualnymi koncepcjami na temat formowania się planet i względną obfitością w mgławicy protoplanetarnej pierwiastków takich jak żelazo, nikiel, magnez, krzem, tlen, węgiel i azot.

Opracowanie:
Agnieszka Nowak

Źródło:

14 grudnia 2018

Szukając brakujących światów, Hubble znajduje szybko znikającą planetę

Rybacy byliby zdziwieni, gdyby łowili jedynie duże i małe ryby, ale niewiele tych średniej wielkości. Astronomowie również byli zakłopotani odkrywając planety pozasłoneczne. Znaleźli gorące planety rozmiarów Jowisza i gorące super-ziemie (planety nie większe, niż 1,5 średnicy Ziemi). Planety te są gorące, ponieważ krążą bardzo blisko swoich macierzystych gwiazd. Ale tak zwane „gorące Neptuny”, których atmosfera jest podgrzewana do prawie 1000 oC, były znacznie trudniejsze do znalezienia. W rzeczywistości do tej pory znaleziono zaledwie garstkę gorących Neptunów.

W rzeczywistości większość planet pozasłonecznych jest zaledwie „ciepła”, ponieważ krążą one dalej od swoich gwiazd, niż te w regionie, w którym astronomowie spodziewają się znaleźć gorące Neptuny. Tajemniczy deficyt gorących Neptunów sugeruje, że takie obce światy są rzadkością lub że były kiedyś powszechne, ale od tego czasu zniknęły.

Kilka lat temu naukowcy korzystający z Kosmicznego Teleskopu Hubble’a odkryli, że jeden z najcieplejszych znanych Neptunów (GJ 436b) traci swoją atmosferę. Planeta nie powinna wyparować, ale cieplejsze Neptuny mogły nie mieć tyle szczęścia.

Teraz astronomowie użyli teleskopu Hubble’a, aby złapać drugiego „bardzo ciepłego” Neptuna (GJ 3470b), który traci swoją atmosferę w tempie 100 razy szybszym, niż (GJ 436b). Obie planety znajdują się w odległości około 6 mln km od swoich gwiazd. To 1/10 odległości pomiędzy Słońcem a Merkurym (najbardziej wewnętrzna planeta Układu Słonecznego). 


Podobnie jak w przypadku wcześniej odkrytych parujących planet, intensywne promieniowanie gwiazdy ogrzewa atmosferę do momentu, w którym ucieka ona przed przyciąganiem grawitacyjnym planety. Jednym z powodów, dla których GJ 3470b może parować szybciej, niż GJ 436b jest to, że nie jest ona tak gęsta, więc jest mniej zdolna do grawitacyjnego utrzymania gorącej atmosfery.

Co więcej, gwiazda macierzysta GJ 3470b ma zaledwie 2 mld lat a ta, którą okrąża GJ 436b jest w wieku pomiędzy 4 a 8 mld lat. Młodsza gwiazda jest bardziej energetyczna, więc bardziej bombarduje promieniowaniem swoją planetę, niż starsza promieniuje w GJ 436b. Obie gwiazdy są czerwonymi karłami, które są mniejsze, niż nasze Słońce i żyjące dłużej, niż ono.

Odkrycie dwóch parujących, ciepłych Neptunów wzmacnia pogląd, że gorętsza wersja tych odległych światów może być klasą planet przejściowych, których ostatecznym przeznaczeniem jest zmniejszenie się do najbardziej powszechnego typu znanych egzoplanet, mini-Neptunów – planet o ciężkich, zdominowanych przez wodór atmosferach, większych od Ziemi ale mniejszych od Neptuna. Ostatecznie, planety te mogą zmniejszać się jeszcze bardziej, aby stać się super-ziemiami, masywniejszym, skalistymi  wersjami Ziemi.

Naukowcy wykorzystali spektrograf obrazowania teleskopu Hubble’a w celu wykrycia promieniowania ultrafioletowego pochodzącego od wodoru w olbrzymim kokonie otaczającym planetę, która przechodzi na tle tarczy swojej gwiazdy. Ten kokon wodoru odfiltrowuje część światła gwiazdy. Wyniki te są interpretowane jako dowód na to, że atmosfera planety ulatuje w kosmos.

Zespół szacuje, że planeta straciła aż 35% materii w ciągu swojego życia, ponieważ prawdopodobnie szybciej traciła masę, gdy czerwony karzeł był młodszy i emitował jeszcze więcej promieniowania. Jeżeli planeta nadal będzie szybko tracić materię, zmniejszy się do rozmiarów mini-Neptuna w ciągu kilku milionów lat.

Wodór prawdopodobnie nie jest jedynym pierwiastkiem wyparowującym z planety. Naukowcy planują użyć Hubble’a do polowania na pierwiastki cięższe, niż wodór i hel, które połączyły się z wodorem, aby uciec z planety. Uważają oni, że wodór może przenosić cięższe pierwiastki, takie jak węgiel, który znajduje się głębiej w atmosferze, w górę i na zewnątrz w kosmos.

Obserwacje te są częścią przeglądu Panchromatic Comparative Exoplanet Treasury (PanCET), programu Hubble’a, w ramach którego astronomowie przyjrzą się 20 egzoplanetom, głównie gorącym Jowiszom, w pierwszym badaniu porównawczym na wielką skalę odległych światów w ultrafiolecie, świetle widzialnym oraz podczerwieni.

Obserwowanie parowania tych dwóch ciepłych Neptunów jest zachęcające, ale członkowie zespołu wiedzą, że muszą dowiedzieć się więcej, aby potwierdzić przewidywania. Niestety, być może nie istnieją inne planety tej klasy znajdujące się wystarczająco blisko Ziemi, aby można było je obserwować. Problem polega na tym, że wodoru nie można wykryć w ciepłych Neptunach w odległości większej, niż 150 lat świetlnych od Ziemi, ponieważ jest zasłonięty przez gaz międzygwiazdowy. GJ 3470b znajduje się w odległości 97 lat świetlnych od nas. 

Hel także jest pierwiastkiem uciekającym z atmosfery gorącego Neptuna. Astronomowie mogliby wykorzystać Hubble’a a w przyszłości także Kosmiczny Teleskop Jamesa Webba do poszukiwania w podczerwieni promieniowania helu, ponieważ nie jest on blokowany przez materię międzygwiazdową.

Opracowanie:
Agnieszka Nowak

Źródło:

13 grudnia 2018

Kampania ALMA dostarcza niespodziewanego wejrzenia na narodziny planet

Astronomowie skatalogowali już blisko 4000 egzoplanet krążących wokół innych gwiazd. Choć nauczyliśmy się wiele o nowo odkrytych światach, wciąż niewiele wiemy o kolejnych etapach formowania się planet oraz kosmicznym przepisie na to, jak rodzą się odkryte już takie obiekty, jak np. gorące Jowisze, masywne skaliste światy, lodowe planety karłowate a może i w przyszłości odległe odpowiedniki Ziemi.


Aby odpowiedzieć na te oraz inne intrygujące pytania na temat rodzin planet, zespół astronomów wykorzystujący ALMA przeprowadził jedno z najgłębszych badań na temat dysków protoplanetarnych.

Ten duży program ALMA, zwany Disk Substructures at High Angular Resolution Project (DSHARP), przyniósł oszałamiające obrazy wysokiej rozdzielczości 20 pobliskich dysków protoplanetarnych i dał astronomom nowy wgląd w różnorodność właściwości, jakie one zawierają oraz szybkość, z jaką planety mogą powstać.

Według naukowców najbardziej przekonującą interpretacją tych obserwacji jest to, że duże planety, prawdopodobnie pod względem wielkości i składu podobne do Neptuna lub Saturna, formują się szybko, znacznie szybciej, niż wskazuje na to obecna teoria. Mają też tendencję do tworzenia się w zewnętrznych obszarach swoich układów słonecznych, w ogromnych odległościach od macierzystych gwiazd. 

Takie przedwczesne tworzenie się mogłoby także pomóc wyjaśnić, w jaki sposób skaliste, ziemskie światy są w stanie ewoluować i wzrastać, zachowując swój przypuszczalny autodestrukcyjny okres dorastania.

Celem miesięcznej kampanii obserwacyjnej ALMA było poszukiwanie strukturalnych podobieństw i różnic w dyskach protoplanetarnych. Wyjątkowo ostry obraz ALMA pokazał niewidoczne wcześniej struktury i niespodziewanie skomplikowane wzory. Widać wyraźne szczegóły wokół szerokiego asortymentu młodych gwiazd o różnych masach. Najbardziej przekonującą interpretacją tych bardzo różnorodnych właściwości jest to, że niewidoczne planety wchodzą w interakcje z materią dysku.

Wiodące modele formowania się planet utrzymują, że planety powstają w wyniku stopniowego gromadzenia się pyłu i gazu wewnątrz dysku protoplanetarnego, poczynając od ziaren pyłu, które łączą się tworząc coraz większe skały, aż do pojawienia się planetoid, planetozymali i planet. Ten hierarchiczny proces powinien zająć wiele milionów lat, co sugeruje, że jego wpływ na dyski protoplanetarne byłby najbardziej powszechny w starszych układach. Jednak zgromadzone dowody wskazują, że nie zawsze tak jest.

Wcześniejsze obserwacje ALMA młodych dysków protoplanetarnych (niektóre z nich mające około miliona lat) ujawniają zastanawiające i zaskakujące struktury w tym wyraźne pierścienie i szczeliny, które wydają się być znakami rozpoznawczymi planet. Astronomowie początkowo ostrożnie przypisywali te cechy działaniom planet, ponieważ w grę mógł wchodzić inny, naturalny proces.

Ponieważ zestaw próbek był tak mały, nie można było wyciągnąć żadnych nadrzędnych wniosków. Możliwe, że astronomowie obserwowali nietypowe układy. Konieczne było zatem wykonanie więcej obserwacji różnych dysków protoplanetarnych w celu określenia najbardziej prawdopodobnej przyczyny właściwości, które widzieli astronomowie.

Kampania DSHARP została zaprojektowana właśnie po to, by zbadać względnie niewielki rozkład cząsteczek pyłu wokół 20 pobliskich dysków protoplanetarnych. Te cząsteczki pyłu świecą w naturalny sposób na długościach milimetrowych, co pozwala ALMA dokładnie odwzorować rozkład gęstości małych cząsteczek wokół młodych gwiazd.

Naukowcy odkryli, że wiele podstruktur – koncentrycznych szczelin, wąskich pierścieni – jest wspólnych dla prawie wszystkich dysków, podczas gdy w niektórych przypadkach występują również wielkoskalowe spiralne wzory i właściwości przypominające łuk. Ponadto dyski i szczeliny są obecne w szerokim zakresie odległości od ich gwiazd macierzystych, od kilku do ponad stu jednostek astronomicznych, co stanowi ponad trzykrotną odległości Neptuna od Słońca.  

Właściwości te, które mogą być odciskami wielkich planet, mogą wyjaśnić, w jaki sposób skaliste planety podobne do Ziemi mogą się kształtować i rozwijać. Przez dziesięciolecia astronomowie głowili się nad poważną przeszkodą w teorii powstawania planet: kiedy planetozymale osiągną odpowiednią wielkość – około 1 km średnicy – dynamika gładkiego dysku protoplanetarnego skłoniłaby je do wpadnięcia w gwiazdę, i nigdy nie przejęły by masy niezbędnej do utworzenia takich planet, jak Mars, Wenus i Ziemia.

Gęste pyłowe pierścienie, które teraz widzimy dzięki ALMA, wytworzyły by bezpieczną przystań dla skalistych światów, aby te w pełni dojrzały. Ich wyższa gęstość i stężenie cząsteczek pyłu tworzą perturbacje w dysku, tworząc strefy, w których planetozymale będą miały więcej czasu, aby wyrosnąć na w pełni rozwinięte planety.

Opracowanie:
Agnieszka Nowak

Źródło:

9 grudnia 2018

Radiowe poszukiwania sztucznych emisji z 'Oumuamua

Po raz pierwszy w okolicy pojawił się gość z innego układu gwiezdnego. Ale czym on jest? Asteroidą, kometą... czy obcym artefaktem?


Naukowcy z Instytutu SETI próbowali odpowiedzieć na to pytanie z wykorzystaniem radioteleskopów ATA (Allen Telescope Array) w obserwacji 'Oumuamua, gdy ta znajdowała się w odległości około 270 mln km od nas. Ich zamiarem były pomiary sztucznych transmisji radiowych, które, jeżeli znalezione, byłyby mocnym dowodem na to, że obiekt ten nie jest po prostu skałą wyrzuconą w przestrzeń kosmiczną przez przypadkową interakcję grawitacyjną, do której doszło w jej macierzystym układzie gwiezdnym.

Od odkrycia w październiku 2017 r. 'Oumuamua była obiektem powszechnych spekulacji na temat możliwego nienaturalnego pochodzenia, głównie dlatego, że przypominała międzygwiezdny statek kosmiczny z powieści Arthur C. Clarke’a „Spotkanie z Ramą”. Jej bardzo wydłużony kształt i fakt, że nie zaobserwowano żadnego warkocza kometarnego, dla niektórych umocnił tę hipotezę, gdyż jest to nietypowe dla komet czy asteroid.

Niedawny artykuł opublikowany w Astrophysical Journal Letters przez naukowców z Harvardu zasugerował również możliwość, że 'Oumuamua jest celową konstrukcją. Twierdzą oni, że niewielkie, nieoczekiwane przyspieszenie zaobserwowane dla tego obiektu może być spowodowane ciśnieniem światła słonecznego, gdy 'Oumuamua przechodziła w pobliżu Słońca. Ich hipoteza głosi, że obiekt może być żaglem słonecznym celowo lub przypadkiem wysłanym w pobliżu nas. Takie rozważanie pochodzenia uważane jest za nieco bardziej prawdopodobne, ponieważ nasz Układ Słoneczny jest zbyt małym celem dla obiektu, który nie jest docelowy.

Takie argumenty wzmacniają znaczenie obserwacji takich, jak te prowadzone przez ATA, które mogą wymusić prawdziwy charakter 'Oumuamua.

Obserwacje przeprowadzono między 23 listopada a 5 grudnia 2017 roku z wykorzystaniem szerokopasmowego korelatora ATA na częstotliwościach od 1 do 10 GHz i rozdzielczości 100 kHz. Nie znaleziono sygnałów, które byłyby stworzone przez wielokierunkowy nadajnik o mocy ok. 10 watów lub większej. W widmie radiowym, które jest nieustannie zagracane przez telemetrię satelitarną, próg był wyższy. We wszystkich przypadkach te ograniczenia energii, które można by wykryć, są dość skromne.

Chociaż nie znaleziono sygnałów pochodzących z ‘Oumuamua, rodzaje obserwacji zgłaszane przez naukowców z Instytutu SETI mogą mieć zastosowanie w ograniczaniu charakteru wszelkich obiektów międzygwiezdnych wykrytych w przyszłości a nawet małych, dobrze znanych obiektów w naszym Układzie Słonecznym. Od dawna sądzono, że niektóre z nich mogą być międzygwiezdnymi sondami, a obserwacje radiowe oferują sposób na rozwiązanie tego zmyślonego, ale w żadnym wypadku nie niemożliwego, pomysłu.

Opracowanie:
Agnieszka Nowak

Źródło:

8 grudnia 2018

Znaleziono nieznaną skarbnicę planet ukrytą w pyle

Nowe badania przeprowadzone przez międzynarodowy zespół naukowców sugerują, że tzw. super ziemie i planety rozmiarów Neptuna mogą powstawać wokół młodych gwiazd znacznie częściej, niż wcześniej sądzono. 


Obserwując próbki młodych gwiazd w regionie gwiazdotwórczym w konstelacji Byka, naukowcy odkryli, że wiele z nich otaczają struktury, które najlepiej można wytłumaczyć jako wyrzeźbione przez niewidoczne, młode planety. Badania pomogą naukowcom zrozumieć, jak powstał nasz własny Układ Słoneczny.

Około 4,6 mld lat temu nasz Układ Słoneczny był toczącym się, falującym wirem gazu i pyłu otaczającym nowo narodzone Słońce. We wczesnych etapach ten tak zwany dysk protoplanetarny nie miał żadnych dostrzegalnych cech, ale wkrótce jego fragmenty zaczęły łączyć się w bryłki materii – przyszłe planety. Gdy zbliżały się do nowej materii na drodze wokół Słońca, rozrastały się i zaczynały tworzyć wzory szczelin i pierścieni w dysku, z którego się uformowały. Z biegiem czasu dysk pyłowy ustąpił miejsca względnie uporządkowanemu układowi, jaki znamy dzisiaj, składający się z planet, księżyców, planetoid i czasem komety.

Naukowcy opierają scenariusz powstania Układu Słonecznego na podstawie obserwacji dysków protoplanetarnych wokół innych gwiazd, które są na tyle młode, że obecnie tworzą swoje planety. Korzystając z ALMA składającego się z 45 anten radiowych zlokalizowanych na chilijskiej pustyni Atacama, zespół przeprowadził badanie młodych gwiazd w regionie gwiazdotwórczym Byka, rozległego obłoku gazu i pyłu znajdującego się w odległości zaledwie 450 lat świetlnych od Ziemi. Kiedy badacze zaobserwowali 32 gwiazdy otoczone dyskami protoplanetarnymi odkryli, że 12 z nich – 40 procent – ma pierścienie i szczeliny, struktury, które zgodnie z pomiarami i obliczeniami najlepiej można wytłumaczyć obecnością powstających planet.

Podczas, gdy niektóre dyski protoplanetarne wyglądają jak jednolite, podobne do naleśnika obiekty pozbawione jakichkolwiek właściwości czy wzorów, zaobserwowane zostały koncentryczne jasne pierścienie rozdzielone szczelinami. Od kiedy poprzednie przeglądy skupiały się na najjaśniejszych z tych obiektów, gdyż są one łatwiejsze do znalezienia, nie było jasne, jak powszechne we Wszechświecie są dyski ze strukturami pierścieni i szczelin. W tym badaniu przedstawiono wyniki pierwszego obiektywnego przeglądu, w którym docelowe dyski zostały wybrane niezależnie od ich jasności. Inaczej mówiąc, naukowcy, gdy wybierali je do badania nie wiedzieli, czy którykolwiek z nich ma struktury pierścieniowe.

Zespół zmierzył właściwości pierścieni za pomocą ALMA i przeanalizował dane, aby ocenić możliwe mechanizmy, które mogły je spowodować. Podczas, gdy te struktury mogą być rzeźbione przez planety, wcześniejsze badania sugerują, że mogły być także stworzone przez inne efekty.

Ponieważ bezpośrednie wykrycie planet jest niemożliwe ze względu na przyćmiewającą je jasność gwiazdy macierzystej, zespół wykonał obliczenia, aby uzyskać wyobrażenia o rodzajach planet, które mogą się formować w regionie gwiazdotwórczym Byka. Zgodnie z odkryciami, planety gazowe wielkości Neptuna lub tak zwane super ziemie (planety ziemskie do rozmiarów 20 Ziem) powinny być najbardziej rozpowszechnione. Tylko dwa z dysków mogłyby potencjalnie posiadać potwory rywalizujące z Jowiszem, największą planetą Układu Słonecznego.

Idąc dalej, grupa badawcza planuje przesunąć anteny ALMA dalej, co powinno zwiększyć jej rozdzielczość do około 5 jednostek astronomicznych oraz spowodować, że będą bardziej czułe na innych częstotliwościach, co spowoduje lepszą czułość na inne rodzaje pyłu.

Opracowanie:
Agnieszka Nowak

Źródło:

4 grudnia 2018

Cztery nowe detekcje fal grawitacyjnych

W sobotę, 1 grudnia b.r. naukowcy przedstawili nowe wyniki z interferometru laserowego LIGO oraz detektora fal grawitacyjnych Virgo, które wyszukują łączących się obiektów kosmicznych, takich jak pary czarnych dziur bądź gwiazd neutronowych. Urządzenia wspólnie wykryły fale grawitacyjne pochodzące w sumie od dziesięciu łączących się czarnych dziur o masach gwiazdowych oraz jednego połączenia się gwiazd neutronowych, które są gęstymi, sferycznymi pozostałościami po gwiezdnych eksplozjach. Sześć zdarzeń związanych z łączeniem się czarnych dziur zostało zgłoszonych wcześniej, a cztery ogłoszono niedawno.


Od 12 września 2015 r. do 19 stycznia 2016 r., podczas pierwszej serii obserwacyjnej LIGO, wykryto fale grawitacyjne z trzech potrójnych połączeń czarnych dziur. Druga seria obserwacyjna, która trwała od 30 listopada 2016 r. do 25 sierpnia 2017 r. przyniosła jedno potwierdzenie z łączących się gwiazd neutronowych i siedem od łączących się czarnych dziur, w tym cztery nowe zdarzenia fal grawitacyjnych zgłaszane teraz. Zdarzenia zostały nazwane GW170729, GW170809, GW170818 oraz GW170823, w odniesieniu do dat, kiedy zostały wykryte (GW – gravitional waves, rrmmdd).

Niektóre z tego typu zdarzeń pobiły pewne rekordy. Na przykład nowe zdarzenie – GW170729 – to najmasywniejsze i najodleglejsze źródło fal grawitacyjnych, jakie kiedykolwiek zaobserwowano. W połączeniu tym, które wydarzyło się 5 mld lat temu, energia równa prawie 5 masom Słońca została przekształcona w promieniowanie grawitacyjne. 

GW170814 było pierwszym układem podwójnym łączących się czarnych dziur mierzonym przez sieć trzech detektorów i uwzględnionym przy pierwszych testach polaryzacji fali grawitacyjnej (analogicznie do polaryzacji światła).

Zdarzenie GW170817, wykryte trzy dni po GW170814, reprezentowało pierwszą detekcję fal grawitacyjnych pochodzących od łączących się gwiazd neutronowych. Co więcej, zdarzenie to zostało zaobserwowane w falach grawitacyjnych oraz w świetle widzialnym.

Nowe zdarzenie – GW170818 – wykryte w globalnej sieci stworzonej przez LIGO i Virgo, było bardzo precyzyjnie zlokalizowane na niebie. Pozycja układu podwójnego czarnych dziur położonych 2,5 mld lat świetlnych stąd, została ustalona na niebie z dokładnością 39 stopni kwadratowych. Sprawia to, że jest to kolejne najlepiej zlokalizowane źródło fal grawitacyjnych, po zdarzeniu GW170817, pochodzącemu od łączących się gwiazd neutronowych.

W ciągu zaledwie jednego roku, pracując razem LIGO i Virgo znacznie rozwinęły naukę o falach grawitacyjnych, a tempo odkryć sugeruje, że najbardziej spektakularne odkrycia mają dopiero nadejść. Następna seria obserwacyjna rozpocznie się na wiosnę 2019 r. i powinna przynieść znacznie więcej kandydatów do fal grawitacyjnych. 

Opracowanie:
Agnieszka Nowak

Źródło:

3 grudnia 2018

Obłoki gazowe wirujące wokół czarnej dziury tworzą serce wyjątkowo odległego, jasnego obiektu

Odkrycie to jest pierwszą szczegółową obserwacją okolic masywnej czarnej dziury znajdującej się poza Drogą Mleczną.


W 1963 roku astronom Maarten Schmidt zidentyfikował pierwszą „niby gwiazdę” – kwazar – bardzo jasny ale odległy obiekt. Odkrył, że pojedynczy kwazar, aktywne jądro odległej galaktyki, znanej astronomom jako 3C 273, jest 100 razy jaśniejszy, niż wszystkie gwiazdy razem w Drodze Mlecznej.

Obecnie międzynarodowy zespół naukowców GRAVITY doszedł do wniosku, że wokół centralnej czarnej dziury znajdującej się w samym sercu kwazara, szybko rotują obłoki gazowe. 

Pierwszy pomiar masy czarnej dziury wewnątrz 3C 273, przy użyciu starszej metody, przeprowadzono w 2000 r. we Florence and George Wise Observatory w ramach badań doktoranckich prowadzonych przez dr Shai Kaspi z Tel Aviv University a następnie studenta z grupy prof. Netzera z TAU. Wynik ten został potwierdzony przez obserwacje GRAVITY.

Badania są pierwszą szczegółową obserwacją obłoków gazowych wirujących wokół centralnej czarnej dziury znajdującej się poza naszą galaktyką. Zdaniem naukowców pomiary GRAVITY staną się punktem odniesienia dla pomiaru mas czarnych dziur w tysiącach innych kwazarów.

Instrument GRAVITY, ulokowany w Paranal, Chile, ma niespotykane dotąd możliwości. Łączy on zespół czterech teleskopów, tworząc wirtualny teleskop zwany interferometrem, o średnicy 130 metrów. Przyrząd może wykrywać odległe obiekty astronomiczne w bardzo wysokiej rozdzielczości.

Kwazary należą do najdalszych obiektów astronomicznych, jakie możemy zaobserwować. Odgrywają one również istotną rolę w historii Wszechświata, ponieważ ich ewolucja jest ściśle powiązana z rozwojem galaktyki. Podczas, gdy prawie każda duża galaktyka posiada w swoim jądrze masywną czarną dziurę, do tej pory zaledwie tylko jedna w Drodze Mlecznej była dostępna do tak szczegółowych badań.

Do tej pory takie obserwacje nie były możliwe ze względu na małe rozmiary kątowe wewnętrznego obszaru kwazara – wielkość mniej więcej Układu Słonecznego widzianego z odległości 2,5 mld lat świetlnych.

Szerokie linie emisyjne wytwarzane przez gaz w pobliżu czarnej dziury są obserwacyjnymi cechami charakterystycznymi kwazarów. Dotychczas odległość gazu od czarnej dziury i przypadkowy wzorzec ruchu można było zmierzyć tylko za pomocą starszej metody, która wykorzystywała lekkie zmiany blasku kwazara. Przy pomocy instrumentu GRAVITY astronomowie mogą rozróżnić struktury na poziomie 10 milisekund łuku, co odpowiada rozmiarowi monety 1€ znajdującej się na powierzchni Księżyca.

Informacje o ruchu i odległości gazu bezpośrednio wokół czarnej dziury są kluczowe dla pomiaru jej masy. Po raz pierwszy stara metoda została przetestowana eksperymentalnie i zdała test, potwierdzając wcześniejsze szacunki dla czarnej dziury na ok. 300 mas Słońca.

Opracowanie:
Agnieszka Nowak

Źródło:

2 grudnia 2018

Nowo odkryta supernowa komplikuje teorie ich pochodzenia

Supernowa odkryta przez międzynarodową grupę astronomów dostarcza niespotykanego spojrzenia na pierwsze momenty gwałtownej eksplozji gwiazdy. Promieniowanie z pierwszych godzin wybuchu pokazało nieoczekiwany wzorzec, który Anthony Piro z Carnegie przeanalizował, aby odkryć, że geneza tych zjawisk jest jeszcze bardziej tajemnicza, niż wcześniej sądzono.


Supernowe typu Ia są istotne dla naszego zrozumienia kosmosu. Są kluczowe w produkcji wielu pierwiastków w naszym środowisku a także używane jako kosmiczne miarki do pomiaru odległości w całym Wszechświecie. Pomimo ich znaczenia, faktyczny mechanizm, który wyzwala wybuch supernowej typu Ia, od dziesięcioleci pozostaje zagadką.

Dlatego właśnie kluczowe jest złapanie ich na gorącym uczynku.

Astronomowie od dawna próbowali uzyskać szczegółowe dane z początkowych momentów tych eksplozji, mając nadzieję na ustalenie, w jaki sposób są one wyzwalane. Ostatecznie, w lutym tego roku odkryto supernową typu Ia nazwaną ASASSN-18bt (znaną również jako SN 2018oh).

ASASSN-18bt została odkryta przez All-Sky Automated Survey for Supernovae (ASAS-SN), międzynarodową sieć teleskopów, które rutynowo skanują niebo w poszukiwaniu supernowych i innych kosmicznych eksplozji. Jednocześnie kosmiczny teleskop Keplera był w stanie zebrać uzupełniające dane z tego wydarzenia. Kepler został zaprojektowany do swojej misji poszukiwania planet pozasłonecznych tak, by być niezwykle czułym na niewielkie zmiany w świetle, dzięki czemu był w stanie uzyskać wyjątkowo szczegółowe informacje o genezie wybuchu.

Dzięki połączonym danym z ASAS-SN, Keplera oraz teleskopów na świecie, astronomowie zdali sobie sprawę, że ASASSN-18bt wyglądała nietypowo przez pierwszych kilka dni.

Supernowe typu Ia pochodzą z eksplozji termojądrowej białego karła – martwego jądra pozostałego po gwieździe podobnej do Słońca, która wyczerpała już swoje paliwo. Aby wywołać eksplozję, materia musi zostać przejęta przez białego karła od gwiazdy towarzyszącej. Jednak charakter i sposób, w jaki gwiazda towarzysząca przekazuje paliwo, były tematem długich debat.

Jedna z możliwości jest taka, że dodatkowe promieniowanie widoczne podczas wczesnych etapów supernowej może pochodzić od wybuchającego białego karła zderzającego się z gwiezdnym towarzyszem. Chociaż była to pierwotna hipoteza, szczegółowe porównania z modelowaniem teoretycznym wykonanym przez Piro pokazały, że to dodatkowe promieniowanie może mieć inne, niewyjaśnione pochodzenie.

Potwierdza to hipotezę wysuniętą w ostatnich pracach Carnegie Supernova Project, kierowanego przez Maximiliana Stritzingera z Aarhus University we współpracy z Benem Shappeem i Piro, że mogą istnieć dwie odrębne populacje supernowych typu Ia – te, które wykazują wczesną emisję oraz te, które tego nie robią.

Dzięki ASAS-SN i przeglądom kolejnych generacji, które co noc monitorują niebo, astronomowie znajdą jeszcze więcej nowych supernowych i uchwycą je w momencie wybuchu. Ponieważ więcej tych zdarzeń zostanie odkrytych i zbadanych, mają nadzieję, że będą mogli znaleźć rozwiązanie długotrwałej tajemnicy dotyczącej tego, co daje początek tym kosmicznym eksplozjom.

Opracowanie:
Agnieszka Nowak

Źródło:

Obserwowanie procesów gwiazdotwórczych w kosmiczne południe

Tworzenie się gwiazd w galaktykach wydaje się być mocno regulowane przez przepływ gazu do i z galaktyk. Naukowcom nadal nie udało się ustal...