Przejdź do głównej zawartości

Masy supermasywnych czarnych dziur

Uważa się, że większość galaktyk posiada w swoich jądrach supermasywną czarną dziurę (SMBH), obiekt o masie przekraczającej milion mas Słońca. Droga Mleczna, na przykład, ma w centrum czarną dziurę o masie czterech milionów Słońc. Szacuje się, że najbardziej ekstremalne ich przykłady mają masy sięgające nawet 10 mld Słońc. Zarówno aktywne jak i nieaktywne galaktyki posiadają SMBH ale te pierwsze aktywnie akreują materię oraz promieniują z gorącego środowiska. Masy tych potworów są zwykle mierzone bezpośrednio na podstawie kinematyki gazu lub gwiazd poruszających się pod silnym grawitacyjnym oddziaływaniem jądrem. Pośrednich pomiarów można dokonać również bazując na odkrytych zależnościach pomocniczych; np. masy SMBH wydają się być ściśle powiązane z masami gwiazd i rozkładem ruchów (dyspersja prędkości) obserwowanymi w galaktykach macierzystych. Ponieważ czarne dziury rosną na przestrzeni czasu, korelacje te sugerują, że istnieje pewna współewolucja z galaktyką, ale nie wiadomo dlaczego taka jest i jak się rozwija. Nieaktywne galaktyki czasem wykazują na przykład inną korelację niż aktywne. Niektórzy naukowcy argumentowali, że korelacja z masą gwiazdową jest jedynie produktem ubocznym bardziej fundamentalnych połączeń z dyspersją prędkości.


Zespół astronomów wykorzystał dane z obserwatorium rentgenowskiego Chandra oraz innych misji obserwujących w paśmie X, aby zbadać kluczową kwestię, czy obserwacyjne efekty selekcji powodują pojawienie się korelacji. Na przykład ograniczone możliwości współczesnych teleskopów sprzyjają obserwacjom jedynie tych galaktyk, których gaz i gwiazdy mają największe prędkości, a symulacje komputerowe wykazały, że ten sam efekt może tłumaczyć pojawienie się korelacji. Zamiast tego, astronomowie spojrzeli na promieniowanie rentgenowskie próbki galaktyk, miarę akrecji na ich SMBH, co z kolei jest miarą ich mas i wydajności tworzenia promieniowania. Technika ta wykorzystuje wyniki promieniowania rentgenowskiego poszczególnych galaktyk do uzyskania mas i jest bardziej niezawodna niż podobne, starsze próby, które wykorzystywały połączone średnie wartości rentgenowskie.

Astronomowie odkryli, że masy gwiazdowe galaktyk i ich centralne SMBH wydają się rosnąć razem, i że relacja ta jest prawie niezależna od epoki galaktyk już około 10 mld lat. Wynik ten dostarcza niezależnych dowodów na to, że wcześniejsze korelacje były tendencyjne z powodu efektów selekcji, przynajmniej tych wywodzących się z kinematyki. Zespół donosi o jednej niespodziance: wydajność promieniowania akrecyjnego wynosi około 15%, prawie dziesięć razy więcej niż oczekiwano bazując na teorii, i sugeruje, że czarne dziury wirują gwałtownie, ponieważ wirujące czarne dziury powinny być bardziej wydajnymi radiatorami.

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu. Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu. Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach. Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz. W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę.

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi. Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego. „Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy. Do odkrycia naukowc

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne. Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”. Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przeds