Przejdź do głównej zawartości

Jak rosną olbrzymie galaktyki?

To, jak dokładnie formują się galaktyki, nadal pozostaje otwartym pytaniem w astrofizyce. Nie jest tak, że możemy obserwować ewolucję galaktyki, większość z nich ma 12 mld lat.



Istnieją dwa sposoby obejścia tego problemu. Pierwszym jest po prostu spojrzenie w przeszłość w czasie. Światło potrzebuje skończonej ilości czasu, aby do nas dotrzeć, więc im dalej patrzymy, tym obserwowany obiekt jest starszy. Zatem także im galaktyka odleglejsza, tym ją widzimy młodszą. Zamiast obserwować ewolucję pojedynczej galaktyki, możemy porównać odleglejsze („młodsze”) galaktyki do bliższych („starszych”) galaktyk i interpolować, co mogło spowodować jakiekolwiek zmiany.

Drugi sposób polega na obserwowaniu ewolucji galaktyk w symulowanym kosmosie. Autorzy pracy wykorzystali IllustrisTNG100, część zestawu dużych kosmologicznych symulacji ewolucji galaktyk.

Właściwości kinematyczne (sposób poruszania się) galaktyk gwiazdotwórczych są silnie powiązane z tym, w jaki sposób uzyskały swoją masę. Zespół porównał dyspersję prędkości „młodszych” galaktyk przy przesunięciu ku czerwieni z=3,0-3,8 do „starszych" galaktyk z poprzednich badań z przesunięciem ku czerwieni z~2 i stwierdzili, że ich najbardziej masywne galaktyki miały mniejsze dyspersje prędkości niż masywne „starsze” galaktyki.

Zarówno dziwne historie powstawania gwiazd, jak i dyspersje prędkości wskazują na coś, co dzieje się pomiędzy z=3 i z=2 co zmienia masywne galaktyki. Aby ustalić, co to może być, autorzy wracają do symulacji.

Symulacja IllustrisTNG100 rozpoczyna się od rozkładu masy przy przesunięciu z=127 i trwa do dnia dzisiejszego, z=0. Podczas tego okresu losowe fluktuacje gęstości przy z=127 zamieniają się w galaktyki, które rosną, tworzą gwiazdy i łączą się. Autorzy chcieli się przyjrzeć temu, jak te galaktyki zdobyły swoje gwiazdy na przestrzeni czasu.

Istnieją dwa sposoby, w jakie galaktyka może zyskać gwiazdy: albo poprzez formowanie się z gazu należącego do galaktyki (in situ), albo przez akrecję gwiazd z innych, głównie mniejszych, galaktyk (ex situ). Symulacje pokazują ułamek masy gwiazdowej, który był nagromadzony ex situ, a nie uformowały w galaktyce.

Autorzy spekulują, że ten wzrost frakcji masy gwiazdowej ex situ obserwowany w symulacjach może być odpowiedzialny za wzrost dyspersji prędkości widziany w obserwowanych masywnych galaktykach między z=3 i z=2. Turbulencje i niestabilności grawitacyjne wywołane akrecją gwiazd i gazu zwiększyłyby losowość (dyspersję) prędkości.

Może to również tłumaczyć różnicę w historii formowania się gwiazd między masywnymi galaktykami przy z=2 i z=3. Gaz jest niezbędny do formowania się gwiazd i jeżeli galaktyka przy z=2 byłaby w stanie uzyskać gaz z akrecji, byłaby w stanie zwiększyć tempo formowania się gwiazd. Natomiast mniejsza frakcja masy gwiezdnej ex situ dla z=3 galaktyk wskazuje na mniejszą akrecję i mniejszą szansę na pozyskanie nowego gazu.

Zasadniczo młodsze galaktyki przy z=3 miały mniej czasu na połączenie się z innymi galaktykami, co prowadzi do mniejszych dyspersji prędkości i mniejszej gwiazdotwórczości.

Autorzy zauważają, że ich wnioski są ograniczone przez wiele czynników, w tym np. niewielką liczbę próbki. Są to jednak obiecujące wyniki i pokazują, ile można zyskać, porównując obserwacje i symulacje.

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu.

Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu.
Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach.
Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz.
W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę. Naukowcy uważają, że źró…

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi.

Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego.
„Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy.
Do odkrycia naukowcy wykorzystali dane…

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne.


Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”.
Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przedstawiona przez b…