Przejdź do głównej zawartości

Wykorzystanie soczewek grawitacyjnych do pomiaru ekspansji Wszechświata

Jest to jedna z wielkich debat kosmologicznych: Wszechświat się rozszerza, ale jak szybko? Dwa znane pomiary dają różne wyniki. Fizyk z Leiden University, David Harvey, dostosował niezależną trzecią metodę pomiaru, wykorzystując właściwości zakrzywiania światła galaktyk przewidywane przez Einsteina.


Od prawie wieku wiemy o tym, że Wszechświat się rozszerza. Astronomowie zauważyli, że światło od odległych galaktyk ma większą długość fali niż światło pobliskich galaktyk. Fale światła wydają się rozciągnięte (przesunięte ku czerwieni), co oznacza, że te odległe galaktyki się oddalają.

Tę szybkość rozszerzania się Wszechświata, zwaną stałą Hubble’a, można zmierzyć. Pewne supernowe mają dobrze poznaną jasność, co pozwala oszacować ich odległość od Ziemi i powiązać ją z ich przesunięciem ku czerwieni. Na każdy megaparsek odległości (parsek to 3,3 roku świetlnego), prędkość, z jaką galaktyki się od nas oddalają, wzrasta o 73 km/s.

Jednak coraz dokładniejsze pomiary mikrofalowego promieniowania tła, przynosiły inną stałą Hubble’a: około 67 km/s.

Einstein
Jak to możliwe? Skąd taka różnica? Czy ta różnica może nam powiedzieć coś nowego o Wszechświecie i fizyce? „Właśnie to jest powodem, dla którego pojawił się trzeci pomiar, niezależny od dwóch pozostałych: soczewki grawitacyjne” – mówi fizyk z Leiden, David Harvey.

Ogólna teoria względności Alberta Einsteina przewiduje, że skupisko masy, np. galaktyka, może załamywać drogę światła, podobnie jak czyni to soczewka. Kiedy taka galaktyka znajduje się przed jasnym źródłem światła, światło wydaje się być zakrzywione wokół niego. Może dotrzeć do Ziemi różnymi drogami, co daje nam dwa, a czasem nawet cztery obrazy tego samego źródła.

H0LiCOW
W 1964 roku norweski astrofizyk Sjur Refsdal zauważył, że kiedy soczewkująca galaktyka jest nieco poza środkiem obiektu tła, jedna droga światła jest dłuższa niż inna. Oznacza to, że światło potrzebuje więcej czasu na pokonanie tej drogi. Zatem, gdy następuje zmiana jasności kwazara, ten punkcik będzie widoczny na jednym obrazie przed innym. Różnica może wynosić dni, tygodnie lub miesiące.

Refsdal pokazał, że ta różnica w czasie może być również wykorzystana do określenia odległości do kwazara i soczewki. Porównanie ich z przesunięciem ku czerwieni kwazarów daje niezależny pomiar stałej Hubble’a.

W ramach współpracy badawczej w H0LiCOW wykorzystano sześć soczewek, aby zawęzić stałą Hubble’a do wartości około 73. Istnieją jednak pewne komplikacje: poza różnicą odległości, masa galaktyki na pierwszym planie również ma efekt opóźnienia, w zależności od dokładnej masy rozkładu. „Trzeba modelować ten rozkład, ale pozostaje wiele niedomówień” – mówi Harvey. Taka niepewność ogranicza dokładność tej techniki.

Obrazowanie całego nieba
Może się to zmienić, gdy w 2021 roku w Chile pojawi się nowy teleskop, przeznaczony do obrazowania całego nieba co kilka nocy. Oczekuje się, że owo Vera Rubin Observatory zobaczy tysiące układów podwójnych kwazarów, co da szansę jeszcze bardziej ograniczyć stałą Hubble’a.

Jak mówi Harvey: „Problem w tym, że modelowanie wszystkich tych pierwszoplanowych galaktyk z osobna jest niemożliwe obliczeniowo”. Zamiast tego, Harvey opracował metodę obliczenia średniego efektu pełnego rozkładu nawet tysiąca soczewek.

W takim przypadku indywidualne dziwactwa soczewek grawitacyjnych nie są aż tak ważne i nie trzeba wykonywać symulacji dla wszystkich soczewek. Należy tylko upewnić się, że modeluje się całą populację.

W swoim artykule Harvey pokazuje, że przy takim podejściu błąd w progach stałej Hubble’a jest na poziomie 2%, gdy zbliża się do obserwacji około tysięcy kwazarów.

Ten margines błędu umożliwi miarodajne porównanie kilku stałych Hubble’a i może pomóc w zrozumieniu tych rozbieżności. Ale żeby zejść poniżej tych 2%, trzeba ulepszyć model, wykonując lepsze symulacje. Powinno to być możliwe.

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu. Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu. Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach. Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz. W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę.

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi. Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego. „Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy. Do odkrycia naukowc

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne. Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”. Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przeds