Przejdź do głównej zawartości

Odkryto najciaśniejszy znany dotąd układ podwójny młodych masywnych gwiazd

Astronomowie odkryli układ podwójny masywnych młodych gwiazd, których składniki są najbliższymi z dotychczas zmierzonych, dostarczając cennego „laboratorium” do testowania teorii na temat formowania się układów podwójnych o dużej masie.


Międzynarodowy zespół kierowany przez Uniwersytet w Leeds określił odległość między masywną młodą gwiazdą PDS 27 a jej gwiezdnym towarzyszem na 30 jednostek astronomicznych (j.a.).

To w przybliżeniu odległość między Słońcem i Neptunem. Jest to najciaśniejszy układ podwójny dotąd zmierzony dla młodych, bardzo masywnych gwiazd.

Główna autorka badania, dr Evgenia Koumpia ze Szkoły Fizyki i Astronomii w Leeds, powiedziała: „To bardzo ekscytujące odkrycie. Obserwacje i symulacje komputerowe masywnych układów podwójnych we wczesnych etapach ich powstawania są jednym z głównych zmagań w astronomii. Dzięki PDS 27 i jej towarzyszce znaleźliśmy najbliższe, najbardziej masywne młode obiekty gwiazdowe w układzie podwójnych zbadane dotąd. W skartografowanej przestrzeni brakuje znanych młodych masywnych układów podwójnych. Gwiazdy o dużej masie mają stosunkowo krótką żywotność, wypalając się i eksplodując jako supernowe w ciągu zaledwie kilku milionów lat, co utrudnia ich dostrzeżenie. Ogranicza to naszą zdolność do testowania teorii dotyczących formowania się tych gwiazd.”

W ramach swoich badań zespół zidentyfikował także obiekt towarzyszący innej młodej, masywnej gwieździe – PDS 37. Analiza wykazała odległość między PDS 37 a jej towarzyszem wynoszącą od 42 do 54 j.a. – średnia odległość Słońce-Pluton.

Choć są bardziej oddalone, niż PDS 27 i jej towarzyszka, wciąż jest to znaczące odkrycie, biorąc pod uwagę potrzebne do potwierdzenia w badaniach astronomicznych masywne młode gwiazdy podwójne.

Dr Koumpia kontynuuje: „Sposób, w jaki formują się te układy podwójne, jest dość kontrowersyjny. Badania obserwacyjne układów podwójnych na ich wczesnych etapach mają kluczowe znaczenie dla weryfikacji teorii ich powstania. PDS 27 i PDS 37 to rzadkie i ważne laboratoria, które mogą pomóc w dostarczeniu informacji i testowaniu teorii dotyczących tworzenia się układów podwójnych o dużej masie.”

PSD 27 jest co najmniej 10 razy masywniejsza niż nasze Słońce i znajduje się ok. 8000 lat świetlnych stąd. Aby określić obecność gwiezdnych towarzyszy dla PDS 27 i PDS 37, zespół zastosował najwyższą rozdzielczość przestrzenną dostarczoną przez instrument PIONIER znajdujący się w interferometrze Bardzo Dużego Teleskopu ESO (VLT).

Instrument ten łączy wiązki światła z czterech teleskopów, z których każdy ma 8,2 metra średnicy, naśladując jeden teleskop o średnicy 130 metrów. Wynikająca z tego wysoka rozdzielczość przestrzenna pozwoliła zespołowi rozdzielić tak bliskie układy podwójne pomimo ogromnej ich odległości od nas i wzajemnej bliskości składników. 

Współautor badania, prof. Rene Oudmaijer, także ze Szkoły Fizyki i Astronomii w Leeds, powiedział: „Kolejne duże pytanie – którego dotychczas unikaliśmy z powodu trudności obserwacyjnych – brzmi: dlaczego tak wiele masywnych gwiazd znajduje się w układach podwójnych? Dla astronomów staje się coraz bardziej oczywiste, że masywne gwiazdy prawie nigdy nie rodzą się same ale z co najmniej jednym kompanem. Ale powody, dla których tak jest, są raczej niejasne. Masywne gwiazdy wywierają znaczący wpływ na swoje środowisko. Ich wiatry gwiazdowe, energia i wybuchy supernowych, które generują, mogą wpływać na powstawanie innych gwiazd i galaktyk. Ewolucja i los gwiazd o dużej masie są dość złożone, ale wcześniejsze badania wykazały, że duży wpływ na nie mogą mieć w dużej mierze ich właściwości binarne. Odkrycie młodych, masywnych gwiazd podwójnych stanowi kluczowy krok naprzód, jeżeli chodzi o odpowiedź na wiele pytań, które wciąż mamy na temat tych obiektów gwiazdowych.”

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu. Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu. Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach. Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz. W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę.

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi. Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego. „Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy. Do odkrycia naukowc

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne. Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”. Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przeds