Przejdź do głównej zawartości

Odkryto jedną z najbardziej masywnych gwiazd neutronowych

Wykorzystując pionierskie metody, badacze z Astronomy and Astrophysics Group of the Universitat Politècnica de Catalunya (UPC) oraz z Instituto de Astrofísica de Canarias (IAC) znaleźli gwiazdę neutronową o masie około 2,3 mas Słońca – jedną z najbardziej masywnych, jakie dotąd wykryto. Badanie otwiera nową ścieżkę wiedzy na wielu polach astrofizyki i fizyki jądrowej.


Gwiazdy neutronowe (zwane także pulsarami) to gwiezdne pozostałości, które osiągnęły kres swojego ewolucyjnego życia: są wynikiem śmierci gwiazdy o masie ok. 10 do 30 mas Słońca. Pomimo niewielkich rozmiarów (ok. 20 km średnicy), gwiazdy neutronowe mają masę większą, niż Słońce, w związku z czym są wyjątkowo gęste.

Naukowcy zastosowali nowatorską metodę pomiaru masy jednej z najcięższych gwiazd neutronowych znanych do tej pory. Odkryta w 2011 roku i nazwana PSR J2215 + 5135, z masą ok. 2,3 masy Słońca, jest jedną z najbardziej masywnych z ponad 2000 gwiazd neutronowych znanych do tej pory. Chociaż w badaniu opublikowanym w 2011 r. podano dowody na istnienie gwiazdy neutronowej o masie 2,4 masy Słońca, najmasywniejsze gwiazdy neutronowe potwierdzone przez naukowców a zgłoszone w 2010 i 2013 roku, miały masy 2 Słońc.

Badanie prowadził Manuel Linares, badacz z Astronomy and Astrophysics Group (GAA), we współpracy z astronomami Tariq Shahbaz i Jorge Casares z IAC. Naukowcy wykorzystali dane uzyskane z Gran Telescopio Canarias (GTC), największego teleskopu optycznego i podczerwonego na świecie, Teleskopu Williama Herschela (WHT), Teleskopu Isaaca Newtona (ING) i teleskopu IAC-80 w połączeniu z dynamicznymi modelami układów podwójnych gwiazd.

Pionierskie metody pomiaru

Zespół opracował bardziej dokładną, niż do tej pory stosowano, metodę pomiaru masy gwiazd neutronowych w ciasnych układach podwójnych. PSR J2215+5135 jest częścią układu podwójnego, w którym dwie gwiazdy krążą wokół wspólnego środka masy: „normalna” gwiazda (jak Słońce) „towarzyszy” gwieździe neutronowej. Towarzysz jest silnie napromieniowywany przez gwiazdę neutronową.

Im większa gwiazda neutronowa, tym szybciej towarzysz porusza się po orbicie. Nowa metoda wykorzystuje spektralne linie wodoru i magnezu do pomiaru prędkości, z jaką porusza się gwiazda towarzysząca. Pozwoliło to naukowcom po raz pierwszy zmierzyć z obu stron prędkość gwiazdy towarzyszącej (strona napromieniowana oraz zacieniona) i pokazać, że gwiazda neutronowa może mieć ponad 2 masy Słońca.

Nowa metoda może być także zastosowana do reszty tej rosnącej populacji gwiazd neutronowych. W ciągu ostatnich 10 lat teleskop promieni gamma Fermi-LAT odkrył dziesiątki pulsarów podobnych do PSR J2215+5135. Zasadniczo metoda ta może być również stosowana do pomiaru masy czarnych dziur i białych karłów, gdy zostaną odnalezione w podobnych układach podwójnych, w których napromieniowanie ma znaczenie.

Gęstsze, niż jądro atomowe

Możliwość określenia maksymalnej masy gwiazdy neutronowej ma bardzo ważne konsekwencje dla wielu dziedzin astrofizyki, a także dla fizyki jądrowej. Interakcje między nukleonami (protonami i neutronami, które tworzą jądro atomu) w wysokich gęstościach są jedną z największych zagadek w dzisiejszej fizyki. Gwiazdy neutronowe są naturalnym laboratorium do badań najgęstszych i najbardziej egzotycznych stanów materii, jakie możemy sobie wyobrazić.

Wyniki projektu sugerują również, że aby osiągnąć masę 2,3 mas Słońca, odpychanie między cząsteczkami w jądrze gwiazdy neutronowej musi być wystarczająco silne. To wskazywałoby, że mało prawdopodobne jest znalezienie wolnych kwarków lub innych egzotycznych form materii w centrum gwiazdy neutronowej. 

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu.

Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu.
Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach.
Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz.
W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę. Naukowcy uważają, że źró…

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi.

Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego.
„Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy.
Do odkrycia naukowcy wykorzystali dane…

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne.


Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”.
Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przedstawiona przez b…