Ciemna strona materii

Tylko niewielki ułamek całkowitej masy Wszechświata tworzą znane cząsteczki (materia barionowa i neutrina), podczas gdy reszta składa się z ciemnej materii. To sprawia, że ciemna materia jest integralną częścią tzw. modelu kosmologicznego Lambda Cold Dark Matter, który naukowcy wykorzystują do opisania natury Wszechświata zgodnie z jego wiekiem, tempem ekspansji, historią i zawartością.


Istnienie ciemnej materii po raz pierwszy zostało wskazane w latach 30. XX wieku, kiedy szwajcarski astrofizyk Fritz Zwicky znalazł anomalię, gdy próbował oszacować masę dużych gromad galaktyk za pomocą pomiarów prędkości poszczególnych galaktyk w tych gromadach. Stwierdził, że obserwowane prędkości były zaskakująco wysokie i postulował, że galaktyki muszą podlegać polu grawitacyjnemu znacznie silniejszemu niż to, które tworzy masa obserwowanych układów, a zatem dodatkowa masa była wynikiem jakiejś formy nieobserwowalnego rodzaju „ciemnej” materii. Potwierdzenie tych prognoz zajęło 40 lat, kiedy to amerykańska astrofizyk Vera Rubin przedstawiła solidne dowody obserwacyjne rozbieżności między przewidywanym a obserwowanym ruchem obrotowym gwiazd w galaktykach. W związku z tym wiemy teraz, że wszystkie galaktyki znajdują się w centrach „halo” ciemnej materii, charakteryzujących się dużą gęstością centralną, ale rozciągających się daleko poza rozmiar widzialnej galaktyki.

Podczas, gdy obserwacje mówią nam o tym, że ciemna materia istnieje, jej natura nadal pozostaje jedną z największych tajemnic nauki.

Model standardowy fizyki cząstek może wyjaśnić znane cząstki i siły we Wszechświecie, nie może jednak wyjaśnić istnienia tajemniczej ciemnej materii. Okazuje się, że żadna z cząstek tworzących model standardowy nie jest w stanie w pełni zaspokoić właściwości ciemnej materii, czego wymagają obserwacje kosmologiczne. Luka ta sugeruje, że model standardowy jest niekompletny i że rozwiązanie zagadki ciemnej materii może być łącznikiem z innymi nierozwiązanymi problemami w fizyce cząstek, więc jej badanie może spowodować znaczący przełom w naszym podstawowym zrozumieniu natury.

Od dawna kandydatami na cząsteczki ciemnej materii są tzw. słabo oddziałujące masywne cząsteczki (Weakly Interacting Massive Particles – WIMP). WIMPy pojawiły się jako idealny kandydat na ciemną materię: cząsteczki teoretyczne o masie 100-1000 razy większej od masy protonu (ok. 100 GeV - 1 TeV), które naturalnie powstałyby z odpowiednią obfitością we Wszechświecie. WIMPy nie są jednak jedynym kandydatem. Szeroki zakres proponowanych kandydatów obejmuje masę około 40 rzędów wielkości: od wyjątkowo lekkich, takich jak „aksjony”, przez znacznie cięższe „WIMPZille” po obiekty makroskopowe, takie jak pierwotne czarne dziury.

Grawitacja doprowadziła do odkrycia istnienia ciemnej materii i wciąż jest jedyną siłą, dzięki której cząsteczki ciemnej materii oddziałują. Jeżeli jednak cząsteczka ciemnej materii ma uzupełnić standardowy model cząsteczek podstawowych, istnieje nadzieja, że będzie ona także w stanie oddziaływać z innymi znanymi cząsteczkami, co może dostarczyć kolejnej możliwości jej wykrycia.

W ciągu ostatnich kilku dziesięcioleci społeczność naukowa połączyła siły i opracowała jasną (wstępną) strategię poszukiwania WIMP: poprzez ich produkcję w zderzeniach cząstek (jak np. w Wielkim Zderzaczu Hadronów), poprzez rozproszenie w modelu standardowym w dedykowanych detektorach i poprzez obserwacje astrofizyczne. Główną ideą tego ostatniego jest to, że w regionach Wszechświata, w których gęstość ciemnej materii jest wysoka, cząsteczki ciemnej materii mogą ulegać samozniszczeniu albo rozpadowi, wytwarzając cząsteczki modelu standardowego, które docierają do nas w postaci promieniowania kosmicznego a także promieni gamma.

Zatem nie ma wątpliwości, że Cherenkov Telescope Array (Teleskop Czerenkowa – CTA) będzie działać jako potężny instrument do wykrywania ciemnej materii: CTA wykryje bardzo wysokoenergetyczne promieniowanie gamma, obiecujący sposób poszukiwania ciemnej materii, gdy promienie gamma przemieszczają się w liniach prostych (w przeciwieństwie do naładowanego promieniowania kosmicznego) i są łatwiejsze do złapania niż neutrina. CTA wykorzysta w szczególności swoją niespotykaną czułość i rozdzielczość energetyczną do przechwytywania promieniowania gamma dokładnie w zakresie energii odpowiadającym cięższemu końcowi masy WIMPów.

Różne eksperymenty przeprowadzone w ciągu ostatnich dekad zbadały i wykluczyły znaczną część lżejszych kandydatów na WIMPy. Chociaż obecne instrumenty nie są wystarczająco czułe, aby wykryć niektóre z najlepiej uzasadnionych modeli WIMP, ich sygnały mogą chować się dokładnie w optymalnym zakresie energii CTA.

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Łączenie się galaktyk rzuca światło na model ewolucji galaktyk

Astronomowie ujawniają nowe cechy galaktycznych czarnych dziur

Odkryto podwójnego kwazara we wczesnym Wszechświecie