Przejdź do głównej zawartości

Zderzające się egzoplanety

Obecnie istnieje około 2000 potwierdzonych egzoplanet o promieniu mniejszym, niż 3 promienie Ziemi, a pomiary ich gęstości wykazują zadziwiającą różnorodność. Niektóre mają gęstości niższe niż Neptun, który składa się głównie z substancji lotnych (materiałów mniej gęstych niż metal i skała, ale Neptun jest prawie cztery razy większy od Ziemi), podczas gdy inne wydają się mieć gęstości podobne do skał, tak wysokie jak ziemskie lub wyższe. Tak szeroka gama kompozycji może być efektem różnych warunków początkowych w procesie formowania planety, lub tego, że na planecie dzieje się coś dramatycznego, co w miarę ewolucji zmienia jej właściwości początkowe.


W nowym artykule astronomowie z Istituto Nazionale Di Astrofisica (INAF) – Aldo S. Bonomo i Mario Damasso – oraz astrofizyk z CfA – Li Zeng, wraz z dużym zespołem współpracowników ogłaszają, że w układzie egzoplanetarnym Kepler-107 musiała nastąpić gigantyczna kolizja. Chociaż istnieją pewne dowody obserwacyjne dla procesu kolizyjnego w Układzie Słonecznym, jak dotąd nie było jednoznacznego odkrycia popierającego scenariusz zderzeń wśród egzoplanet.

Astronomowie sądzili, że planety o niskiej gęstości, jak olbrzymy – Jowisz, Saturn, Uran i Neptun – powstają w zimnych lodowych i gazowych zewnętrznych obszarach dysków protoplanetarnych młodych gwiazd, natomiast wewnętrzna strefa tworzy planety z pierwiastków skalistych, takich jak krzemiany i żelazo, których cząsteczki mogą przetrwać w cieplejszym środowisku. Dzisiaj obraz ten stał się bardziej skomplikowany, gdy odkryto setki olbrzymich egzoplanet o małej gęstości, orbitujących wokół swoich gwiazd. W przypadku efektów ewolucyjnych uważa się, że na gęstość planety najprawdopodobniej wpływają dwa procesy: utrata masy z atmosfery i/lub powierzchni planety w skutek odparowania, do którego dochodzi przez promieniowanie gwiazdy macierzystej lub olbrzymie zderzenie między planetami.

Spośród czterech znanych egzoplanet w układzie Kepler-107, dwie najbardziej wewnętrzne mają prawie identyczne promienie – odpowiednio  1,536 i 1,597 promienia Ziemi (niepewność każdego z nich wynosi zaledwie 0,2%). Ich okresy również są podobne i wynoszą odpowiednio 3,18 i 4,9 dni, co oznacza, że krążą stosunkowo blisko siebie. Korzystając ze spektrografu HARPS-N zamontowanym na Telescopio Nazionale Galileo w La Palma, zespół określił masy planet, a więc i ich gęstość. Obserwacje są zaskakujące – ich gęstości są bardzo różne: odpowiednio 5,3 i 12,65 g/cm3. Dla porównania, gęstość wody wynosi 1 g/cm3, a Ziemia ma gęstość 5,5 g/cm3. Faktu, że jedna planeta ma gęstość ponad dwukrotnie większą, niż druga, nie daje się łatwo wytłumaczyć efektami promieniowania gwiazdy, które powinny wpłynąć na obydwa te czynniki w ten sam sposób. Co więcej, zewnętrzna planeta jest gęstsza od wewnętrznej. Astronomowie twierdzą, że zamiast tego, olbrzymie uderzenie w jedną z planet, Kepler-107c (gęstsza planeta), pozbawiło ją części początkowego krzemianowego płaszcza, pozostawiając ją zdominowaną przez gęste żelazne jądro. Wspierają tę hipotezę obliczeniami teoretycznymi.

Li Zeng zauważa: „To jeden z wielu interesujących układów pozasłonecznych, które odkrył i scharakteryzował teleskop Keplera. Odkrycie to potwierdziło wcześniejsze prace teoretyczne sugerujące, że olbrzymie zderzenie pomiędzy planetami odegrało rolę podczas formowania planet. Oczekuje się, że znajdzie więcej takich przykładów.”

Jeżeli w układach planetarnych często występują katastrofalne zakłócenia, astronomowie przewidują znalezienie wiele innych przykładów, takich jak Kepler-107, ponieważ coraz dokładniej określane są gęstości egzoplanet.

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu.

Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu.
Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach.
Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz.
W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę. Naukowcy uważają, że źró…

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi.

Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego.
„Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy.
Do odkrycia naukowcy wykorzystali dane…

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne.


Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”.
Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przedstawiona przez b…