Przejdź do głównej zawartości

Tajemnica korony wokół supermasywnych czarnych dziur się pogłębia

Naukowcy z RIKEN wykorzystali obserwacje z ALMA do pomiaru siły pól magnetycznych w pobliżu dwóch supermasywnych czarnych dziur w centrum ważnej grupy aktywnych galaktyk. Zaskakujące jest to, że siły pól magnetycznych wydają się niewystarczające do zasilania koron, obłoków przegrzanej plazmy, które są obserwowane wokół czarnych dziur w centrach tych galaktyk.


Od dawna wiadomo, że supermasywne czarne dziury, które znajdują się w centrach galaktyk, czasami przewyższające blaskiem swoje macierzyste galaktyki, są otoczone koroną przegrzanej plazmy, tak jak Słońce. W przypadku czarnych dziur korony te mogą być podgrzane do fenomenalnej temperatury sięgającej miliarda stopni Celsjusza. Od dawna zakładano, że, podobnie jak Słońce, korony były ogrzewane energią pola magnetycznego. Jednak, owe pola nigdy nie zostały zmierzone, pozostawiając niepewność dotyczącą ich dokładnego mechanizmu.

W artykule opublikowanym w 2014 r. grupa naukowców przewidziała, że elektrony w plazmie otaczającej czarne dziury emitują specjalny rodzaj światła, znanego jako promieniowanie synchrotronowe, ponieważ istnieją w koronach razem z siłami magnetycznymi. Konkretnie promieniowanie to byłoby w paśmie radiowym, co oznacza światło o bardzo dużej długości fali i niskiej częstotliwości. Grupa postanowiła zmierzyć te pola.

Postanowili przyjrzeć się danym z dwóch „pobliskich” – w skali astronomicznej – aktywnych jąder galaktycznych – IC 4329A, oddalonego o około 200 mln lat świetlnych, oraz NGC 985, oddalonej o około 580 mln lat świetlnych stąd. Rozpoczęto od pomiarów z obserwatorium ALMA w Chile, a następnie porównano je z obserwacjami z dwóch innych radioteleskopów: obserwatorium VLA w USA oraz ATCA w Australii, które badają nieco inne pasma; i rzeczywiście wykryli nadmiar promieniowania radiowego pochodzącego od promieniowania synchrotronowego, oprócz emisji z dżetów od czarnych dziur.

Dzięki obserwacjom, zespół wywnioskował, że korona ma rozmiar około 40 promieni Schwartzchilda i siłę około 10 gaussów, czyli postać, która jest nieco większa, niż pole magnetyczne na powierzchni Ziemi i mniejsza, niż w typowym magnesie na lodówkę.

Zaskoczeniem jest to, że chociaż potwierdzili emisję radiowego promieniowania synchrotronowego z korony w obu obiektach, okazuje się, że pole mierzonego pola magnetycznego jest zbyt słabe, aby być w stanie napędzać intensywne ogrzewanie korony wokół tych czarnych dziur. To samo zjawisko zostało zaobserwowane w obu galaktykach, co sugeruje, że może być ono powszechne.

Patrząc w przyszłość, grupa planuje szukać oznak silnych promieni gamma, które powinny towarzyszyć emisjom radiowym, aby lepiej zrozumieć, co dzieje się w bliskim otoczeniu supermasywnych czarnych dziur.

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu. Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu. Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach. Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz. W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę.

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi. Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego. „Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy. Do odkrycia naukowc

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne. Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”. Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przeds