Czy czarna dziura pochłaniająca gwiazdę wygenerowała neutrino?
Nowe obliczenia pokazują, że czarna dziura pochłaniająca gwiazdę mogła nie wygenerować wystarczającej ilości energii do wysłania neutrina.
Wizja artystyczna zdarzenia rozerwania pływowego AT2019dsg, gdzie supermasywna czarna dziura rozciąga i pochłania gwiazdę. Źródło: DESY, Science Communication Lab
W październiku 2019 roku wysokoenergetyczne neutrino uderzyło w Antarktydę. Neutrino, które było niezwykle trudne do wykrycia, wzbudziło zainteresowanie astronomów: co mogłoby wygenerować tak potężną cząsteczkę?
Naukowcy prześledzili wstecz drogę neutrino i oszacowali, że ślad wiedzie do supermasywnej czarnej dziury, która właśnie rozerwała i połknęła gwiazdę. Znane jako zdarzenie rozerwania pływowego (TDE), AT2019dsg wystąpiło zaledwie kilka miesięcy wcześniej – w kwietniu 2019 roku – w tym samym rejonie nieba, z którego pochodziło neutrino. Astronomowie stwierdzili, że to monstrualnie gwałtowne zdarzenie musiało być źródłem potężnej cząsteczki.
Jednak nowe badania poddają w wątpliwość to twierdzenie.
W pracy opublikowanej w październiku 2021 roku w The Astrophysical Journal, zespół naukowców przedstawił nowe, obszerne obserwacje radiowe i dane dotyczące AT2019dsg, pozwalające zespołowi obliczyć energię wyemitowaną przez to zdarzenie. Odkrycia pokazują, że AT2019dsg nie wygenerowało energii potrzebnej do wytworzenia neutrino; w rzeczywistości to, co wyrzuciło, było całkiem „zwyczajne”, konkluduje zespół.
Czarne dziury to niechlujni zjadacze
Chociaż może się to wydawać sprzeczne z intuicją, czarne dziury nie zawsze pochłaniają wszystko w swoim zasięgu.
Kiedy gwiazda wędruje zbyt blisko czarnej dziury, siły grawitacyjne zaczynają ją rozciągać. Ostatecznie, wydłużona materia spiralnie okrąża czarną dziurę i nagrzewa się, tworząc błysk na niebie, który astronomowie mogą dostrzec z odległości milionów lat świetlnych.
Ale kiedy jest zbyt dużo materii, czarne dziury nie mogą jej w całości na raz pochłonąć – mówi Kate Alexander, współautorka badania, która nazywa czarne dziury „niechlujnymi pożeraczami”. Część gazu zostaje wypluta z powrotem podczas tego procesu.
Te resztki są wyrzucane z powrotem w przestrzeń kosmiczną w postaci wypływu lub strumienia – który, jeżeli jest wystarczająco silny, może teoretycznie wygenerować cząsteczkę subatomową znaną jako neutrino.
Nieprawdopodobne źródło neutrin
Korzystając z Very Large Array (VLA) w Nowym Meksyku i Atacama Large Millimeter/submillimeter Array (ALMA) w Chile, zespół był w stanie obserwować AT2019dsg, oddalone od nas o 750 mln lat świetlnych, przez 500 dni po tym, jak czarna dziura zaczęła pochłaniać gwiazdę. Obszerne obserwacje radiowe uczyniły AT2019dsg najlepiej zbadanym TDE do tej pory i ujawniły, że jasność radiowa osiągnęła szczyt około 200 dni po rozpoczęciu zdarzenia.
Zgodnie z danymi, całkowita ilość energii w wypływie była równoważna energii, jaką Słońce wyprodukuje w ciągu 30 mln lat. Chociaż może to brzmieć imponująco, potężne neutrino zauważone 1 października 2019 roku wymagałoby źródła 1000 razy bardziej energetycznego.
Yvette Cendes, doktorantka w Centrum Astrofizyki, która kierowała badaniami, mówi: Jeżeli to neutrino w jakiś sposób pochodzi z AT2019dsg, nasuwa się pytanie: Dlaczego nie zauważyliśmy neutrin związanych z supernowymi w tej odległości lub bliższej? Są one znacznie bardziej powszechne i mają taką samą energię prędkości.
Zespół doszedł do wniosku, że jest mało prawdopodobne, że neutrino pochodzi z tego konkretnego TDE. Jeżeli jednak tak się stało, to astronomowie są dalecy od zrozumienia TDE i tego, w jaki sposób wysyłają one neutrina.
TDE AT2019dsg zostało po raz pierwszy dostrzeżone 9 kwietnia 2019 roku przez Zwicky Transient Facility w Kalifornii Południowej. Neutrino, znane jako IceCube-191001A, zostało wykryte IceCube Neutrino Observatory znajdujące się na biegunie południowym sześć miesięcy później.
Opracowanie:
Agnieszka Nowak
Źródło: