Przejdź do głównej zawartości

Hubble odkrywa niewidziane wcześniej zjawiska wokół gwiazdy neutronowej

Niezwykła emisja promieniowania podczerwonego z pobliskiej gwiazdy neutronowej, wykryta przez HST, może wskazywać na nowe zjawiska, których nigdy wcześniej nie obserwowano. Jednym z możliwych wyjaśnień jest dysk pyłowy otaczający gwiazdę neutronową; inny jest taki, że z obiektu wydobywa się wiatr energetyczny oddziałujący z gazem w przestrzeni międzygwiezdnej, przez którą przebija się gwiazda neutronowa.


Chociaż gwiazdy neutronowe są powszechnie badane na falach radiowych i promieniach X, to badanie pokazuje, że można uzyskać nowe i interesujące informacje o tych obiektach badając je także w świetle podczerwonym.

Obserwacja przeprowadzona przez amerykańskich i tureckich naukowców mogła pomóc astronomom lepiej zrozumieć ewolucję gwiazd neutronowych – niesamowicie gęstych pozostałości po tym, jak masywna gwiazda wybuchnie jako supernowa. Gwiazdy neutronowe nazywane są także pulsarami, ponieważ ich bardzo szybka rotacja (zwykle ułamek sekundy, a w tym przypadku 11 sekund) powoduje emisję zmienną w czasie.

Ta konkretna gwiazda należy do grupy siedmiu pobliskich pulsarów rentgenowskich nazywanych „Wspaniałą Siódemką”, które są gorętsze, niż powinny, biorąc pod uwagę ich wiek i dostępny zapas energii dostarczanej przez utratę energii rotacji. Astronomowie obserwowali rozległy obszar emisji podczerwieni wokół owej gwiazdy neutronowej (RX J0806.4-4123). Całkowity rozmiar tej emisji rozciąga się na odległość ponad 200 jednostek astronomicznych od pulsara.

Jest to pierwsza gwiazda neutronowa, u której zaobserwowano wydłużony sygnał jedynie w emisji podczerwonej. Naukowcy sugerują dwie możliwości, które mogłyby wyjaśnić wydłużony sygnał podczerwieni widziany przez HST. Pierwszą jest dysk materii znajdujący się wokół pulsara – prawdopodobnie w większości pyłowy.

Jedna z teorii głosi, że może istnieć tzw. „opadający dysk” materii, która połączyła się wokół gwiazdy neutronowej po eksplozji supernowej. Dysk taki składałby się z materii pochodzącej od masywnej gwiazdy progenitora. Późniejsza interakcja z gwiazdą neutronową mogła rozgrzać pulsara i spowolnić jego rotację. Jeżeli opadający dysk po supernowej zostanie to potwierdzony, wynik może zmienić nasze ogólne rozumienie ewolucji gwiazd neutronowych.

Drugim możliwym wyjaśnieniem wydłużonej emisji promieniowania podczerwonego jest „mgławica pulsarowa”.

Do powstania mgławicy pulsarowej wymagane jest, aby gwiazda neutronowa wykazywała wiatr pulsarowy. Wiatr pulsarowy może być wytwarzany dzięki szybkiej rotacji gwiazdy neutronowej o silnym polu magnetycznym. Gdy gwiazda neutronowa przemieszcza się przez ośrodek międzygwiezdny szybciej, niż prędkość dźwięku, może powodować szok uderzeniowy, w którym ośrodek międzygwiezdny oddziałuje z wiatrem pulsarowym. Cząsteczki z szoku emitowałyby wówczas promieniowanie synchrotronowe, powodując wydłużony sygnał podczerwieni, który widzimy. Zazwyczaj mgławice pulsarowe widziane są w promieniach rentgenowskich.

Opracowanie:
Agnieszka Nowak

Źródło: 

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu. Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu. Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach. Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz. W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę.

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi. Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego. „Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy. Do odkrycia naukowc

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne. Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”. Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przeds