Przejdź do głównej zawartości

Pierwsze obliczenia aktywności magnetycznej egzoplanet typu gorące Jowisze

Według nowego badania przeprowadzonego przez zespół astrofizyków gazowe olbrzymy krążące blisko swoich gwiazd mają potężne pola magnetyczne, wielokrotnie silniejsze od tego, jakie ma Jowisz. Po raz pierwszy moc tych pól została obliczona na podstawie obserwacji.


„Nasze badanie jest pierwszym, w którym wykorzystano obserwacje sygnałów do uzyskania natężenia pola magnetycznego planety. Sygnały te wydają się pochodzić z oddziaływania pomiędzy polami magnetycznymi gwiazdy i ciasno okrążającej jej planety” – powiedział prof. Evgenya Shkolnik ze School of Earth and Exploration Uniwersytetu Arizona.

Wiele światów
Od 1988 roku odkryto ponad 3000 układów zawierających przeszło 4000 egzoplanet. Wiele z tych układów gwiazdowych zawiera to, co astronomowie nazywają „gorącymi Jowiszami”. Są to masywne planety gazowe przypuszczalnie podobne do naszego Jowisza, ale krążące w niewielkich odległościach od swoich gwiazd, zazwyczaj zaledwie pięciokrotnie większej, niż średnica gwiazdy, lub mniej więcej 20-krotnie większej, niż odległość Ziemia-Księżyc.

Takie planety dobrze przemieszczają się w polu magnetycznym swojej gwiazdy, gdzie oddziaływania między polem planet i gwiazd mogą być nieustanne i silne.

Siły pola magnetycznego mieszczą się w przedziale 20 – 120 gausów. Dla porównania, pole magnetyczne Jowisza wynosi 4,3 gausa, a natężenie ziemskiego pola to tylko połowa gausa.

Wyzwalanie aktywności
Astronomowie użyli teleskopów na Hawajach i we Francji do pozyskania wysokiej rozdzielczości obserwacji emisji zjonizowanego wapnia (Ca II) w gwiazdach macierzystych czterech gorących Jowiszów. Emisja pochodzi z gorącej, magnetycznie ogrzewanej chromosfery gwiazdy (cienkiej warstwy gazu nad chłodniejszą powierzchnią gwiazdy). Obserwacje pozwoliły zespołowi obliczyć, ile energii zostało uwolnione przez gwiazdy w emisji wapnia.

„Pola magnetyczne lubią być w stanie niskiej energii. Jeżeli skręcisz lub rozciągniesz pole jak gumkę, zwiększy to energię zmagazynowaną w polu magnetycznym” – mówi Wilson Cauley z Uniwersytetu Kolorado. Gorące Jowisze krążą bardzo blisko swoich gwiazd macierzystych, więc pole magnetyczne planety może skręcać i rozciągać pole magnetyczne gwiazdy.

„Kiedy to nastąpi, energia może zostać uwolniona, gdy obydwa pola ponownie się połączą, a to ogrzeje atmosferę gwiazdy, zwiększając emisję wapnia” – powiedział Cauley.

Sondując głęboko
Astrofizycy podejrzewali, że gorące Jowisze, podobnie jak nasz gazowy olbrzym, mają pola magnetyczne wytwarzane głęboko w swoich wnętrzach. Nowe obserwacje dostarczają pierwszego sondowania wewnętrznej dynamiki tych masywnych planet.

Jest to pierwsze oszacowanie natężenia pola magnetycznego dla tych planet na podstawie obserwacji, więc jest to ogromny krok w wiedzy. Daje to naukowcom lepsze zrozumienie tego, co dzieje się wewnątrz tych planet.  

Powinno to również pomóc naukowcom, którzy modelują wewnętrzne dynama gorących Jowiszów. Do tej pory nic nie wiedzieli o ich polach magnetycznych – ani polach magnetycznych żadnych egzoplanet – a teraz mają oszacowania dla czterech realnych układów.

Zaskakująco potężny
Siły pola, jak twierdzi zespół, są większe, niż można by się spodziewać, biorąc pod uwagę jedynie rotację i wiek planety. Standardowa teoria dynamo planetarnych pól magnetycznych przewiduje siły pola dla badanych planet, które są znacznie mniejsze niż to, co odkrył zespół.

Zamiast tego obserwacje potwierdzają pogląd, że planetarne pola magnetyczne zależą od ilości ciepła przemieszczającego się wewnątrz planety. Ponieważ pochłaniają dużą ilość dodatkowej energii ze swoich macierzystych gwiazd, gorące Jowisze powinny mieć większe pola magnetyczne niż planety o podobnej masie i tempie rotacji.

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu.

Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu.
Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach.
Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz.
W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę. Naukowcy uważają, że źró…

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi.

Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego.
„Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy.
Do odkrycia naukowcy wykorzystali dane…

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne.


Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”.
Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przedstawiona przez b…