Przejdź do głównej zawartości

Gazowe mini-Neptuny zdatne do zamieszkania?

Większość gwiazd w naszej galaktyce to obiekty małomasywne, zwane także karłami typu M. Mniejsze i ciemniejsze niż nasze Słońce, posiadające w bliższej odległości od siebie ekosferę, są dobrym celem do badań i znalezienia potencjalnych planet zdatnych do zamieszkania. Astronomowie spodziewają się znaleźć w nadchodzących latach więcej planet podobnych do Ziemi lub tzw. super-ziemie znajdujące się w ekosferach tych gwiazd. Ważne aby się dowiedzieć, czy jest możliwe istnienie życia na tych planetach. Super-ziemia to planeta masywniejsza od Ziemi, ale mniej masywna niż gazowe olbrzymy takie jak Neptun czy Uran.

Ponieważ planety, które krążą wokół karłów typu M w ich ekosferze, znajdują się znacznie bliżej swoich macierzystych gwiazd niż Ziemia od Słońca, to siły pływowe działające na ich powierzchniach są również silniejsze. Odpowiedzialna za nie jest siła grawitacyjna gwiazdy. W przypadku Ziemi za siły pływowe odpowiedzialne są Słońce i Księżyc. Przez ich działanie na Ziemi występują przypływy i odpływy wód oceanicznych. Siły te powodują tarcie we wnętrzu planety wydzielające ogromne ilości energii. Jej wynikiem może być aktywność wulkaniczna na powierzchni planety, a w niektórych przypadkach może powodować jej podgrzanie w wyniku czego wyparują oceany niwecząc szansę na powstanie życia. Taki wpływ gwiazdy może także zmniejszyć szanse na powstanie życia na planetach krążących wokół małomasywnych gwiazd. Karły typu M gdy są młode, są jasne i emitują ogromne ilości wysokoenergetycznego promieniowania rentgenowskiego oraz ultrafioletowego. Może to powodować podgrzewanie górnych warstw atmosfery planety co prowadzi do powstawania silnych wiatrów, które ją całkowicie osłabiają. W wyniku tego cała woda może zostać usunięta z powierzchni w ciągu zaledwie kilkuset milionów lat od momentu powstania planety.
Dzięki modelowaniu komputerowemu astronomowie doszli do wniosku, że siły pływowe i ucieczka atmosfery mogą czasami tak ukształtować planetę, że ta stanie się mini-Neptunem, potencjalnie nadającym się do zamieszkania globem. Jak dochodzi do takiej transformacji? Mini-Neptuny tworzą się zazwyczaj z dala od swoich macierzystych gwiazd, z cząsteczek lodu połączonych z wodorem i helem w postaci gazowej, w ogromnych ilościach, tworząc lodowe lub skaliste jądro otoczone masywną gazową atmosferą. Siły pływowe mogą spowodować migrację mini-Neptuna w pobliże jej macierzystej, gorącej gwiazdy, do ekosfery, gdzie będzie narażona na silne działanie promieniowania rentgenowskiego i ultrafioletowego. Proces ten może prowadzić do utraty gazów z atmosfery, czasem pozostawiając wolny od wodoru zimny, skalisty glob krążący w ekosferze. Astronomowie nazywają taki twór “odparowanym jądrem zdatnym do zaistnienia na nim życia”. Planeta taka może na swojej powierzchni posiadać wodę, ponieważ jej jądro jest bogate w lód.

Aby planeta była zdatna do zamieszkania musi być spełnionych jeszcze kilka innych warunków. Jednym z nich jest powstanie w atmosferze możliwości recyklingu składników odżywczych na całym globie. Innym warunkiem jest odpowiedni czas. Jeżeli planeta zacznie tracić wodór i hel zbyt wolno w trakcie jej formowania się, pokrywa gazowa zacznie dominować i skalisty, ziemski świat nie będzie mógł powstać. Natomiast jeżeli planeta straci wodór zbyt szybko może się okazać, że cała woda uleci w przestrzeń. Wynika z tego że transformacja z mini-Neptuna w planetę podobną do Ziemi może być drogą do powstania warunków sprzyjających rozwojowi życia na planetach krążących wokół karła typu M. Jednak to, czy planety te są zdatne do życia dowiemy się z przyszłych badań.

Źródło:
Astrobiology

Urania - Postępy Astronomii

Popularne posty z tego bloga

Wykryto największą eksplozję w historii Wszechświata

Naukowcy badający odległą gromadę galaktyk odkryli największą eksplozję obserwowaną we Wszechświecie od czasów Wielkiego Wybuchu.

Wybuch pochodził z supermasywnej czarnej dziury w centrum odległej o setki milionów lat świetlnych stąd galaktyki. W trakcie eksplozji zostało uwolnione pięć razy więcej energii, niż przy poprzednim ówczesnym najpotężniejszym wybuchu.
Astronomowie dokonali tego odkrycia przy użyciu danych z obserwatorium rentgenowskiego Chandra i XMM-Newton, a także danych radiowych z Murchison Widefield Array (MWA) w Australii i Giant Metrewave Radio Telescope (GMRT) w Indiach.
Ten potężny wybuch został wykryty w gromadzie galaktyk Ophiuchus, która znajduje się około 390 mln lat świetlnych stąd. Gromady galaktyk to największe struktury we Wszechświecie utrzymywane razem przez grawitację, zawierające tysiące pojedynczych galaktyk, ciemną materię i gorący gaz.
W centrum gromady Ophiuchus znajduje się duża galaktyka zawierająca supermasywną czarną dziurę. Naukowcy uważają, że źró…

Odkryto najbliższą znaną „olbrzymią planetę niemowlęcą”

Nowonarodzona masywna planeta znajduje się zaledwie 100 parseków od Ziemi.

Naukowcy odkryli nowonarodzoną masywną planetę bliższą Ziemi niż jakikolwiek tego typu obiekt w podobnym wieku. Olbrzymia niemowlęca planeta, nazwana 2MASS 1155-7919 b, znajduje się w asocjacji Epsilon Chamaeleontis i leży tylko około 330 lat świetlnych od naszego Układu Słonecznego.
„Ciemny, chłodny obiekt, który znaleźliśmy, jest bardzo młody i ma zaledwie 10 mas Jowisza, co oznacza, że prawdopodobnie patrzymy na planetę niemowlęcą, być może wciąż w fazie formowania się. Chociaż zostało odkrytych wiele innych planet podczas misji Kepler i innych podobnych, prawie wszystkie z nich są planetami ‘starymi’. Obiekt ten jest jednocześnie czwartym lub piątym przykładem planety olbrzymiej krążącej tak daleko od swojej gwiazdy macierzystej. Teoretycy usiłują wyjaśnić, w jaki sposób się tam uformowały lub jak tam dotarły” – powiedziała Annie Dickson-Vandervelde, główna autorka pracy.
Do odkrycia naukowcy wykorzystali dane…

Czy rozwiązano tajemnicę ekspansji Wszechświata?

Badacz z Uniwersytetu Genewskiego rozwiązał naukową kontrowersję dotyczącą tempa ekspansji Wszechświata, sugerując, że na dużą skalę nie jest ono całkowicie jednorodne.


Ziemia, Układ Słoneczny, cała Droga Mleczna i kilka tysięcy najbliższych nam galaktyk porusza się w ogromnym „bąblu” o średnicy 250 mln lat świetlnych, gdzie średnia gęstość materii jest o połowę mniejsza niż w pozostałej części Wszechświata. Taka jest hipoteza wysunięta przez fizyka teoretyka z Uniwersytetu Genewskiego (UNIGE) jako rozwiązanie zagadki, która od dziesięcioleci dzieli społeczność naukową: z jaką prędkością rozszerza się Wszechświat? Do tej pory co najmniej dwie niezależne metody obliczeniowe osiągnęły dwie wartości różniące się o około 10% z odchyleniem, które jest statystycznie nie do pogodzenia. Nowe podejście usuwa tę rozbieżność bez korzystania z „nowej fizyki”.
Wszechświat rozszerza się od czasu Wielkiego Wybuchu, który miał miejsce 13,8 mld lat temu – propozycja po raz pierwszy przedstawiona przez b…