Małe, odporne planety, które najprawdopodobniej przetrwają śmierć swoich gwiazd

Małe, odporne planety, mające jądro z gęsto upchanych pierwiastków, mają największe szanse na uniknięcie zmiażdżenia i połknięcia, gdy umiera ich gwiazda macierzysta. Badanie zostało opublikowane w dzienniku Monthly Notices of the Royal Astronomical Society.


Astrofizycy z Warwick Astronomy and Astrophysics Group modelowali szanse, jak różne planety zostaną zniszczone przez siły pływowe, gdy ich gwiazdy macierzyste staną się białymi karłami, i określili najważniejsze czynniki decydujące o tym, czy unikną zniszczenia.

Ich „przewodnik przetrwania” dla planet pozasłonecznych może pomóc astronomom zlokalizować potencjalne egzoplanety wokół białych karłów, ponieważ opracowywana jest nowa generacja jeszcze potężniejszych teleskopów w celu ich poszukiwania.

Większości gwiazd, takich jak nasze Słońce skończy się paliwo i kurczą się, stając się białymi karłami. Warstwy zewnętrzne gwiazdy zostaną poddane siłom pływowym, gdy gwiazda zapadnie się i stanie się bardzo gęsta. Siły grawitacyjne wywierane na dowolne okrążające je planety byłyby ogromne i potencjalnie przeciągałyby je na nowe orbity, wypychając nawet niektóre dalej w ich układy słoneczne.

Modelując efekty zmian grawitacyjnych białego karła na orbitujące ciała skaliste, naukowcy określili najbardziej prawdopodobne czynniki, które spowodują, że planeta przeniesie się w „promień zniszczenia” gwiazdy; odległość od gwiazdy, na jakiej obiekt trzymany tylko dzięki własnej grawitacji, rozpadnie się z powodu sił pływowych. W promieniu zniszczenia utworzy się dysk ze szczątków zniszczonych planet. 

Chociaż to, czy planeta przetrwa zależy od wielu czynników, modele pokazują, że im bardziej masywna jest planeta, tym większe jest prawdopodobieństwo, że zostanie zniszczona przez oddziaływania pływowe.

Ale zniszczenie nie jest zależne tylko od samej masy ale częściowo też od lepkości, czyli miary odporności na odkształcenia: egzoplanety typu ziemskiego o niskiej lepkości mogą łatwo zostać pochłonięte, nawet jeżeli znajdują się w odległości pięciokrotnie większej, niż odległość od centrum białego karła do jego promienia zniszczenia. Księżyc Saturna, Enceladus – często określany jako „brudna kula śniegowa” – jest dobrym przykładem jednorodnej planety o bardzo niskiej lepkości.

Egzo-ziemie o wysokiej lepkości mogą być łatwo pochłonięte tylko wtedy, gdy znajdują się w odległości dwa razy większej, niż odległość od centrum białego karła do jego promienia zniszczenia. Planety te składałyby się w całości z gęstego rdzenia ciężkich pierwiastków o podobnym składzie do planety „heavy metal” odkrytej przez inny zespół astronomów z University of Warwick. Planeta ta uniknęła pochłonięcia, gdyż jest tak mała, jak planetoida.

Dr Dimitri Veras z Wydziału Fizyki Uniwersytetu Warwick powiedział: „Artykuł jest jednym z pierwszych w historii poświęconych badaniom efektów pływowych między białymi karłami i planetami. Ten typ modelowania będzie miał coraz większe znaczenie w nadchodzących latach, kiedy prawdopodobnie zostaną odkryte kolejne skaliste obiekty w pobliżu białych karłów.”

Odległość od gwiazdy, podobnie jak masa planety, ma silny związek z przetrwaniem lub pochłonięciem. Zawsze będzie bezpieczna odległość od gwiazdy, która zależy od wielu parametrów. Ogólnie rzecz biorąc, jednorodna skalista planeta, która znajduje się w odległości od białego karła wynoszącej ok. ⅓ dystansu dzielącego Merkurego od Słońca, gwarantuje, że nie zostanie pochłonięta przez siły pływowe.

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Naukowcy badający ciemną materię odkryli, że Droga Mleczna jest bardzo dynamiczna

Ponowna analiza danych z obserwacji supermasywnej czarnej dziury w Drodze Mlecznej

Zrekonstruowano starą galaktykę karłowatą za pomocą przetwarzania rozproszonego MilkyWay@home