Model supermasywnej czarnej dziury przewiduje charakterystyczne sygnały świetlne

Nowa symulacja supermasywnych czarnych dziur wykorzystuje realistyczny scenariusz do przewidywania sygnałów świetlnych emitowanych w otaczającym je gazie, zanim masy się zderzą – informują naukowcy z Rochester Institute of Technology.


Badanie prowadzone przez RIT stanowi pierwszy krok w kierunku przewidywania mającego nastąpić połączenia się supermasywnych czarnych dziur, do czego naukowcy wykorzystają dwa dostępne obecnie kanały informacyjne – elektromagnetyczne oraz grawitacyjne widma falowe. Wyniki pojawiły się w artykule opublikowanym w Astrophysical Journal Letters.

„Przeprowadziliśmy pierwszą symulację, w której dysk akrecyjny wokół układu podwójnego czarnych dziur zasila poszczególne dyski akrecyjne wokół każdej z nich w ogólnej teorii względności i magnetohydrodynamice” – powiedział Bowen, główny autor i dr hab. Center for Computational Relativity and Gravitation RIT.

W przeciwieństwie do ich mniej masywnych kuzynów, odkrytych po raz pierwszy w 2016 r. , supermasywne czarne dziury są zasilane przez dyski gazowe, które je otaczają. Silne przyciąganie grawitacyjne czarnych dziur ogrzewa i zakłóca przepływ gazu z dysku do czarnej dziury i emituje okresowe sygnały w widzialnych częściach rentgenowskiego widma elektromagnetycznego.

„Jeszcze nie widzieliśmy, aby dwie supermasywne czarne dziury były tak blisko siebie. Dostarcza to wskazówek na temat tego, jak ich połączenie będzie wyglądać w teleskopie. Napełnienie i uzupełnienie mini-dysków wpływa na sygnatury światła” – powiedział Bowen.

Symulacje modelują pary supermasywnych czarnych dziur, gdzie każda z dziur jest otoczona własnym dyskiem gazowym. Znacznie większy dysk gazowy otacza czarne dziury i nieproporcjonalnie zasila jeden mini-dysk nad drugim, doprowadzając do cyklu napełniania i uzupełniania opisanego w pracy.

Układy podwójne supermasywnych czarnych dziur emitują fale grawitacyjne na niższych częstotliwościach, niż czarne dziury o masie gwiazdowej. W 2016 r. naziemny interferometr LIGO z instrumentem dostrojonym do wyższych częstotliwości wykrył pierwsze fale grawitacyjne pochodzące ze zderzenie się czarnych dziur o masach gwiazdowych. Czułość LIGO nie jest w stanie zaobserwować sygnałów fal grawitacyjnych wytwarzanych przez kolizję supermasywnej czarnej dziury.

Uruchomienie kosmicznego interferometru LISA (Laser Interferometer Space Antenna), planowane na lata ‘30, pozwoli wykryć fale grawitacyjne przed zderzeniem się supermasywnych czarnych dziur. Planowane na lata ‘20 uruchomienie naziemnego teleskopu LSST (Large Synoptic Survey Telescope), który jest budowany w Chile, przyniesie najszersze i najgłębsze badanie emisji światła we Wszechświecie. Próbka sygnałów przewidywanych w badaniach RIT może skierować naukowców na orbitującą parę supermasywnych czarnych dziur.

Tego typu symulacje są niezbędne do bezpośredniego przewidywania sygnałów elektromagnetycznych, które będą towarzyszyć falom grawitacyjnym pochodzącym z połączenia się supermasywnych czarnych dziur, zanim do tego dojdzie.

Bowen i jego współpracownicy połączyli symulacje z grupy komputerów Black Hole Lab RIT oraz superkomputera Blue Waters w National Center for Supercomputing Applications Uniwersytetu Illinois w Urbana-Champaign, jednym z największych superkomputerów w USA.

Opracowanie:
Agnieszka Nowak

Źródło:

Popularne posty z tego bloga

Naukowcy badający ciemną materię odkryli, że Droga Mleczna jest bardzo dynamiczna

Ponowna analiza danych z obserwacji supermasywnej czarnej dziury w Drodze Mlecznej

Zrekonstruowano starą galaktykę karłowatą za pomocą przetwarzania rozproszonego MilkyWay@home